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Abstract—WebAssembly (Wasm) is a portable, high-
performance binary instruction format originally designed
for web browsers. It is rapidly gaining traction in server-side
applications, including containerized environments orchestrated
by Kubernetes. However, the performance impact of a widespread
WebAssembly adoption in containerized environments remains
unclear. Solutions relying on suboptimal WebAssembly runtimes
may increase performance and memory overhead, especially in
high-density deployment settings.

In this paper, we explore the impact of WebAssembly runtimes
on containerized application deployment in Kubernetes. Through
an in-depth analysis of existing Wasm container runtimes, we
identify inefficiencies in memory usage and startup times, limiting
Wasm’s viability in large-scale deployments. We propose a new
integration of the lightweight WebAssembly Micro Runtime
(WAMR) into the crun container runtime to resolve the iden-
tified inefficiencies of Wasm containers. Benchmark evaluations
demonstrate that our WAMR integration reduces memory usage
by 11% to 78% per container compared to existing Wasm
runtimes while outperforming 4 of 6 benchmarked runtimes
in container startup time. Furthermore, our integration reduces
memory usage compared to Python containers by at least 16%
and startup time by 3% to 18%. Our findings show that Wasm
containers are a competitive alternative to traditional non-Wasm
container solutions, especially in dense container deployments,
and highlight the importance of runtime optimization in cloud-
native environments. Our work is open-source and available at
https://github.com/atlarge-research/continuum/tree/wasm.

Index Terms—WebAssembly, Containers, Kubernetes, Cloud-
native, Memory efficiency, Performance.

I. INTRODUCTION

The landscape of cloud computing has undergone a signifi-
cant transformation in recent years. Containerized applications
have become widely adopted, largely due to the need for
scalable, flexible, and maintainable software deployments [1].
Containers are a cost-effective yet high-performance technique
for isolating application resources. Applications can operate in
separate contexts while sharing the host operating system ker-
nel, filesystem, and resources [2]. Orchestration platforms like
Kubernetes automate deployment, scaling, and management
of containerized environments. The open-source nature of
Kubernetes and its cloud-native approach have revolutionized
the computing landscape in the last decade and made it a

popular choice for orchestrating containerized workloads at
scale [3], [4]. Industry reports show over 60% of companies
have adopted Kubernetes, a figure projected to surpass 90% by
2027 [5]. Other reports show that 5.6 million developers use
Kubernetes and global sales of containerized solutions have
reached 1.2 billion dollars in 2022 [6].

Along with the advantages brought by containerization,
there is also a need for efficient container execution as running
applications in containers creates an overhead that translates
to higher resource usage and energy consumption [7]. The
surge in demand for cloud computing services has further
exacerbated data centers’ energy consumption and carbon
footprint, making energy costs one of the top operational
expenses [8]. Moreover, the high velocity of change in the
number of running containers in large-scale deployment en-
vironments leads to spikes in resource utilization [9]. Cluster
providers need to accommodate more hardware to maintain a
high availability and scalability of services during peak hours,
further increasing operational costs [10].

Despite its advantages, containerization introduces resource
inefficiencies, particularly in high-density deployments where
memory overhead becomes a critical concern, such as server-
less computing [11]. WebAssembly [12] (Wasm), origi-
nally designed for Web browsers, has gained attention as a
lightweight, portable, and secure runtime for executing server-
side applications. Using Wasm, developers can create appli-
cations that are securely sandboxed, highly portable across
diverse hardware and software environments, and capable
of near-native execution speeds. However, integrating Wasm
into containerized environments poses challenges. Existing
Wasm-enabled container runtimes, such as Wasmtime [13] and
WasmEdge [14], often exhibit higher memory overhead than
traditional container runtimes, limiting their scalability.

This paper addresses the overhead and scalability challenges
of Wasm containers by integrating the WebAssembly Micro
Runtime (WAMR) [15] into the crun container runtime [16]
and evaluating its impact on memory efficiency and perfor-
mance in Kubernetes workloads. To motivate our integration
approach, we first analyze the container execution process
of Kubernetes and define a methodology for integrating new



WebAssembly runtimes into Kubernetes. We conduct a com-
prehensive set of experiments to compare the performance
of multiple WebAssembly runtimes. Our results reveal that
different Wasm runtimes exhibit highly varied performance
characteristics, demonstrating that runtime selection is crucial
in optimizing containerized applications. The contributions of
this work are as follows:

1) Integration: We systematically analyze the current sup-
port of WebAssembly in Kubernetes and synthesize
a methodology on integrating WebAssembly runtimes
into the Kubernetes container orchestrator (Section III).
Based on our analysis of WebAssembly and container
runtimes, we propose a novel integration of the WAMR
WebAssembly runtime into the crun container runtime to
lower container memory overhead compared to existing
WebAssembly integrations.

2) Benchmarking: We conduct comprehensive bench-
marks evaluating memory usage, startup performance,
and scalability of different Wasm runtimes in con-
tainerized Kubernetes environments (Section IV). Our
novel WAMR-crun integration shows superior perfor-
mance, with faster container startup compared to 4 of 6
benchmarked WebAssembly runtimes and 11% to 78%
lower container memory consumption. Moreover, we
outperform traditional Python containers in memory (at
least 16%) and startup performance (3% to 18%).

3) Discussion: Based on our results, we provide insights
into the design and implementation of Wasm container
runtimes for cloud-native deployments (Section IV).

By highlighting the performance and resource disparities
between runtimes, our work underscores the importance of
carefully evaluating and optimizing Wasm engines for Kuber-
netes workloads. Our work is open-source and available at
https://github.com/atlarge-research/continuum/tree/wasm.

II. BACKGROUND: CONTAINERS AND KUBERNETES

Containers are an essential technology for modern software
development and deployment, encapsulating applications and
their dependencies in a portable, isolated unit. Unlike OS-
level virtual machines, containers share the host operating
system kernel, resulting in reduced resource usage and faster
startup times. Popular container runtimes, such as Docker and
crun, manage the lifecycle of containers, including creation,
execution, and teardown.

Kubernetes [17] extends the utility of containers by or-
chestrating their deployment across clusters of machines. It
abstracts infrastructure complexities, enabling developers to
focus on application logic. Kubernetes employs a modular
architecture with a control plane that manages worker nodes.
The control plane deploys a centralized API server, scheduler,
and database for decision-making, and a daemon per node to
communicate with a container runtime through a standardized
container runtime interface (CRI) and operating system. Mul-
tiple container runtimes support this CRI, giving Kubernetes
flexibility in choosing runtime implementations that best meet
specific performance or security requirements.

WebAssembly (Wasm) is a stack-based virtual machine
initially designed to execute code in web browsers. It compiles
high-level languages like Rust, C, and Go into a compact
binary format that can run consistently across diverse plat-
forms. Wasm modules operate in a secure, sandboxed envi-
ronment, making them ideal for executing untrusted code. The
sandboxed environment is more lightweight than traditional
virtual machines and containers, allowing Wasm-sandboxed
applications to execute at near-native performance [18]. The
WebAssembly System Interface (WASI) [19] extends Wasm’s
capabilities, allowing modules to perform system-level opera-
tions like file access and networking.

The integration of Wasm into containerized environments
has garnered interest because of its potential to reduce con-
tainer image sizes, improve startup performance, and improve
security [20], [21]. However, we find that Wasm support
in the Kubernetes container orchestrator is complex and ill-
understood, resulting in a broad performance and resource
use heterogeneity between Wasm-enabled container runtimes.
Furthermore, we find that current Wasm containers face lim-
itations in memory efficiency compared to Wasm modules, a
critical factor in large-scale Kubernetes deployments. Address-
ing these inefficiencies is crucial for a more extensive adoption
of Wasm in cloud-native computing.

III. INTEGRATING A LIGHTER WEBASSEMBLY
RUNTIME INTO CRUN

The primary objective of this paper is to assess the impact
of using lighter WebAssembly runtimes on container memory
consumption in Kubernetes. By integrating a lighter runtime,
we aim to reduce the memory overhead of Wasm contain-
ers while maintaining compatibility with existing Kubernetes
workflows. In this section, we first analyze current support
of WebAssembly in Kubernetes (Section III-A) to guide us
in selecting a new lightweight Wasm and container runtime
that can improve memory overhead over existing approaches.
Next, we synthesize a methodology for integrating such a
lightweight Wasm runtime into Kubernetes (Section III-B) and
use it to integrate the WebAssembly Micro Runtime (WAMR)
into the crun container runtime (Section III-C).

A. Current support of WebAssembly in Kubernetes

We illustrate the existing integration of WebAssembly con-
tainer within Kubernetes in Figure 1, following the Wasm
guidelines set by the Cloud Native Computing Founda-
tion [22]. At the top, Kubernetes serves as the container man-
agement platform, orchestrating containerized applications’
deployment, scaling, and operation. It interfaces through the
container runtime interface (CRI) with a high-level container
runtime, such as containerd, CRI-O, or Docker Engine, that
manages container lifecycle operation and relies on a low-
level container runtime to execute these operations through
the operating system. Kubernetes uses containerd by default.

Containerd deploys daemon processes on worker nodes to
communicate with the lower-level container runtimes. These
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Fig. 1. Current WebAssembly support in Kubernetes.

daemons utilize shim processes, lightweight intermediary pro-
cesses running between the containerd daemon and lower-
level container runtimes, to manage container instances. By
using a shim, containerd can ensure that container processes
are decoupled from the containerd daemon, which allows the
daemon to be restarted or upgraded without affecting running
containers, enhancing the system’s reliability.

Containerd uses the lower-level container runtime runC by
default to execute OCI-compliant (Open Container Initiative)
containers via the containerd-shim-runc-v2 shim. The Open
Container Initiative is a set of standards defining how to
operate a container, enforced by Kubernetes’ CRI. We show
in Figure 1 shows that containerd can manage other low-level
container runtimes besides runC, such as crun and youki,
as they are OCI-compliant. Crun and youki support Wasm
containers through the WasmEdge, Wasmer, and Wasmtime
Wasm runtimes. Alternatively, the containerd runwasi project
delivers a set of shims that facilitate the execution of We-
bAssembly containers by bridging containerd directly with
Wasm runtimes, bypassing low-level container runtimes.

B. How to add a new Wasm runtime to Kubernetes?

The complex and hierarchical nature of Kubernetes’ con-
tainer ecosystem makes adding support for a new Wasm
runtime to an existing container runtime, and reasoning what
runtime to support and how, non-trivial [23]. For container
runtimes, Kubernetes allows developers to choose a low-
level container runtime (e.g., runC, crun, youki, etc.) and
independently exchange high-level container runtimes (e.g.,
containerd, CRI-O, Docker Engine, etc.), as long as they

conform to the Container Runtime Interface (CRI) [24].
The myriad of possible container runtime combinations poses
optimization opportunities but requires a thorough analysis
and benchmarking to support reasoning about optimizations,
which currently does not exist. Additionally, the decision on
the Wasm runtime to integrate is non-trivial, as many runtimes
exist with different performance characteristics, properties, and
different support for specific features such as the emerging
WebAssembly System Interface [19] (see Section II). In this
work, we focus on integrating a Wasm runtime with the highest
potential in terms of memory savings. To this end, we have
conducted extensive testing of existing Wasm support, which
we present in Section IV, and preliminary testing of new Wasm
runtimes to assess their memory consumption. Specifically, we
address the following two design questions:

1) Which Wasm runtime should we choose between Was-
mer, Wasmtime, WasmEdge, and Wamr?

2) Should we integrate the Wasm runtime into the low-
level crun or youki container runtimes, or directly into
containerd via runwasi?

Based on preliminary testing and existing research into
Wasm [25], we have decided to use crun as a container
runtime and WAMR as the WebAssembly runtime. In Sec-
tion IV, we provide experiments showing how integrating the
two components leads to significant performance improve-
ments. We selected crun as the container runtime due to
its lightweight nature and performance efficiency, which are
crucial for optimizing resource utilization while ensuring fast
startup times. Additionally, crun has demonstrated superior
support for the Open Container Initiative (OCI) specifications,
which aligns with our goals of maintaining industry standards
and compatibility across various environments. On the other
hand, WAMR was chosen as the WebAssembly runtime due
to its minimal footprint and effective execution capabilities on
constrained devices. WAMR is optimized for small code size,
low latency, and high efficiency, making it an ideal choice
for deploying WebAssembly applications in scenarios where
resource constraints and performance are paramount.

C. Integrating WAMR into crun

Integrating WAMR into crun involves several key steps to
address the inherent differences between traditional container
runtimes and WebAssembly environments. These steps are
non-trivial, requiring changes to ensure compatibility with
crun’s lightweight architecture while maintaining adherence to
Kubernetes’ APIs. At a high level, the core of our integration
has been structured around the following aspects:

1) Dynamic Library Loading: The WAMR shared library
is dynamically loaded at runtime, ensuring minimal
memory footprint when Wasm containers are not used.

2) WASI Argument Handling: The integration supports
passing environment variables, runtime arguments, and
pre-opened directories to Wasm modules, ensuring com-
patibility with existing containerized workflows.
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Fig. 2. Overview of our WAMR integration into crun.

3) Sandboxed Execution: Each Wasm module is executed
in a secure, isolated environment, leveraging WAMR’s
compact runtime and Kubernetes’ namespace isolation.

The modified crun runtime retains full compatibility with
Kubernetes. Kubernetes pods, the scheduling unit of Ku-
bernetes, can seamlessly run traditional and Wasm-based
containers, enabling hybrid deployments without additional
infrastructure changes. An overview of the general architecture
of our integration of WAMS into crun is depicted in Figure 2.
We extend the Kubernetes cluster configuration to evaluate
our integration at scale, now supporting up to 500 pods
per node (each pod can run many containers at once). This
extension requires modifications to the kubelet configuration
and the cluster’s networking setup, ensuring that high-density
workloads can be executed without bottlenecks.

IV. IMPACT OF DIFFERENT WEBASSEMBLY
RUNTIMES ON KUBERNETES

The performance profiles of different WebAssembly run-
times remain insufficiently explored and understood, partic-
ularly in the context of containerized workloads managed
by Kubernetes. To address this gap, we conduct a series of
experiments to evaluate how various WebAssembly runtimes
perform in the context of different container and Kubernetes
pod densities. These experiments focus on performance met-
rics such as memory usage, startup latency, and resource
consumption, providing an overview of the general runtime
behavior of WebAssembly-based containers. In addition to
evaluating existing Wasm-based containers, we also perform
targeted experiments to assess our integration of the We-
bAssembly Micro Runtime into the crun container runtime.
Our experiments demonstrate how the WAMR integration
positively impacts Kubernetes workloads, particularly in terms

TABLE I
SOFTWARE STACK FOR THE EVALUATION.

Software Version Software Version
Linux 5.4.0-187-generic WAMR 2.1.0
Kubernetes 1.27.0 WasmEdge 0.14.0
containerd 1.1.12 Wasmer 4.3.5
runC 1.6.31 Wasmtime 23.0.1

TABLE II
EXPERIMENTS OVERVIEW. EXPERIMENTS DEPLOY 10 TO 400
CONTAINERS CONCURRENTLY, WITH 1 CONTAINER PER POD.

Section Metric Container runtime Language runtime

§ V-B Memory crun WAMR, WasmEdge,
Wasmer, Wasmtime

§ V-C Memory crun, containerd WAMR, WasmEdge,
Wasmer, Wasmtime

§ V-D Memory crun, runC WAMR, Python

§ V-E Latency crun, runC, WAMR, WasmEdge,
containerd Wasmer, Wasmtime, Python

of memory efficiency and startup performance, and high-
light its advantages over existing solutions. By analyzing the
performance of different Wasm-based containers, including
our WAMR-crun integration, we aim to provide insights into
runtime efficiency and identify opportunities for optimization
and future enhancements.

A. Experimental Setup

We execute our experiments on the Continuum frame-
work [26], which deploys a Kubernetes cluster on an Intel(R)
Xeon(R) Silver 4210R CPU with 256GB of RAM and 20 cores
running Ubuntu 20.04.3 LTS. We show an overview of the
used software in Table II. We have modified containerd, runc,
and WAMR to achieve our WAMR integration. In all experi-
ments, we execute a minimal C application corresponding to
a very small microservice. Using such a small microservice
makes memory and startup performance dominated by the
WebAssembly runtime we want to evaluate rather than the
actual microservice being executed. We discuss the impact of
different applications in Sections IV-D and IV-F. We report
memory use per container as an average of the 10 to 400
concurrently deployed containers. The deviation in memory
use is negligible at less than 0.1 MB per container.

B. Memory Overhead Compared to Wasm containers in crun

We measure the memory footprint of running Wasm con-
tainers in a Kubernetes cluster on a system level through the
Linux free command and on a resource management level
through Kubernetes’ metrics server. We show the memory
usage per container as reported by the metrics server in Fig-
ure 3. The vertical axis shows the memory used in megabytes,
where lower values are preferred. The horizontal axis indicates
the runtime configuration used to execute the containers. We
evaluated four configurations: (i) In red, our new implementa-
tion of embedded WebAssembly Micro Runtime in crun; (ii)
crun with Wasmtime; (iii) crun with Wasmer; (iv) crun with
WasmEdge. The measurements for each runtime were made
with deployment densities of 10, 100, and 400 containers per
node, with one identical Wasm container per pod. The results
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Fig. 3. Average memory usage per container for different Wasm runtimes in
crun, measured by Kubernetes. Our work’s results are labeled in red.
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Fig. 4. Average memory usage per container for different Wasm runtimes in
crun, measured by the OS.

for each deployment size are indicated by the separate bars
for each runtime. Our implementation, in red, outperforms the
other three existing Webassembly integrations in crun by at
least 50.34% for any deployment density.

Figure 4 reports the measurements of memory used per
container for the same experiments but collected using the
Linux free command. Compared to the Kubernetes metrics
server results, we notice a significant difference in nominal
values of used memory, with free reporting higher memory
usage in all scenarios, and up to 42% more memory used. This
difference is expected as the free command reports the sys-
tem’s overall memory usage, including buffers, system caches,
and processes other than those related to the Kubernetes
cluster. Meanwhile, the Kubernetes metrics server focuses on
resources used by the workloads scheduled on the node.

Figures 3 and 4 compare our work with all other Wasm
runtimes supported by the low-level container runtime crun.
We can derive that our implementation uses at least 50.34%
(reported by the metrics server) and 40.0 % (reported by
the free command) less memory to execute Wasm containers
than any other Wasm runtime currently supported in crun.
We also observe that the memory overhead per container
does not vary significantly between different deployment sizes.
This finding indicates that our implementation provides proper
scaling performance.

C. Memory Overhead Compared to runwasi

We also benchmark our solution against the runwasi-
delivered high-level runtimes that support Wasm containers
directly from containerd. Such comparison allows us to better
understand the WebAssembly supporting technologies cur-
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Fig. 5. Average memory usage per container for different Wasm shims,
measured by the OS.

rently available and how this work positions itself among them.
We replicate the setup from Figure 4 with the free command
and report the results of the runwasi-integrated runtime shims
in Figure 5. Our implementation, in red, reports the same
measurements across the figures.

Our implementation introduces the lowest memory usage
per container compared to all available runwasi shims, re-
gardless of the deployment size. Compared to the second-best
Wasm runtime in our benchmark, containerd-shim-wasmtime,
we reduce memory usage by at least 10.87%. However, the
difference is smaller than when we compared our work against
Wasm runtimes embedded in crun, where we reduced memory
usage by at least 40.0% compared to the second-best runtime,
crun-wasmedge. Across the crun and runwasi WebAssembly
runtimes, containerd-shim-wasmer reports the worst memory
overhead, with our implementation reducing memory usage by
77.53% over all three deployment densities, as reported by the
free command.

D. Memory Overhead Compared to Non-Wasm Containers

We want to gain insight into how our work could be
positioned among available containerization technologies re-
garding the memory overhead of running a container on
Kubernetes. Thus, as a reference, we also compare our new
implementation of the WAMR runtime embedded into the
crun container runtime against the standard Python container
image. This comparison does not provide direct insights into
the distribution and execution of WebAssembly code inside
an OCI container or the state of WebAssembly support in
Kubernetes. However, we think this comparison helps us
understand the maturity of WebAssembly support in container-
ized environments such as Kubernetes, the visibility of further
development, and challenges that WebAssembly still faces.

Figure 6 and 7 present the measurements of memory used
per container, collected using the Kubernetes metrics server
and the Linux free command, respectively. We compare our
implementation, marked in red, with well-established container
runtimes without Wasm support. Specifically, we compare
our work to a standard Python container deployed with the
crun and runC container runtimes. By including crun, we
can gain valuable insight into how crun performs without
the need to call an underlying WebAssembly runtime and
how it compares with our implementation. We also select
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Fig. 6. Average memory usage per container by our work compared with
Python containers, measured by Kubernetes.

crun+wamr crun+python runC+python
Runtime Configuration Used

0

5

10

15

20

25

M
em

or
y 

pe
r C

on
ta

in
er

 (M
B) Deployment Size:

10 containers
100 containers
400 containers

Fig. 7. Average memory usage per container by our work compared with
Python containers, measured by the OS.

runC because it is the default low-level container runtime for
containerd and Kubernetes. Therefore, we can compare and
challenge our work and the WebAssembly containers against
the performance of the out-of-the-box Kubernetes cluster with
Python containers.

The Kubernetes metrics server measurements (Figure 6)
show that our Wasm integration uses at least 17.98% less
memory compared to crun and Python, and at least 18.15%
less memory compared to runC and Python. Our Wasm
integration is the only Wasm runtime that uses less memory
than these Python container runtimes. Our integration uses
21.07% less memory than the second-most memory-efficient
Wasm runtime according to the metrics server measurements,
containerd-shim-wasmtime. For the evaluations with the Linux
free command in Figure 7, our implementation uses at least
16.38% and 17.87% less memory than the crun and runC
python runtimes. This result shows that Wasm is a competitive
alternative to established container runtimes and program-
ming languages for Kubernetes deployments. The second-most
memory efficient Wasm runtime, containerd-shim-wasmtime,
is now at least 4.66% more efficient than the Python contain-
ers, being the only Wasm runtime besides our new integration
to outperform Python containers in memory usage.

E. Startup Performance

Figure 8 presents the measurements of time needed to
deploy ten containers at once. We start the measurements on
deploying pods to Kubernetes and finish the measurements
when our sample application starts executing in the last
deployed container and pod. The horizontal axis in the figure
represents the deployment time elapsed in seconds. Lower
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Fig. 8. Time to start 10 concurrent containers’ workload executions for
different container runtimes. Results for non-Wasm containers are marked
in a lighter blue color; our work result is marked in orange.
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Fig. 9. Time to start 400 concurrent containers’ workload executions for
different container runtimes.

values are preferred because they indicate a higher startup
performance. The vertical axis indicates the container runtime
used to execute the container workload. The result obtained by
our work, that is, by crun with an embedded WAMR runtime,
is marked in red. The Python containers and runtimes we
compared in Section IV-D are marked in light blue. All Wasm
runtimes bar for our new integration are indicated in blue.

From figure 8, we can derive that our work does not
introduce performance degradation for small deployments of
10 containers. The WebAssembly Micro Runtime embedded
in crun executes all containers’ WASM modules in under
3.24 seconds, which is below the average across all tested
runtimes. The results indicate that containerd-shim-wasmedge
and containerd-shim-wasmtime runtimes have the best startup
performance for small deployments, taking up to 11.45 %
less time to start Wasm modules than our implementation.
However, our work performs at least 2.66 % better than any
other WebAssembly runtime integrated into crun. Moreover,
our integration starts WebAssembly containers faster than the
crun and runC runtimes start Python containers.

We also benchmark the startup performance for the larger
deployment of 400 containers to better evaluate the behavior of
our implementation under heavy loads and test its scalability
performance. Figure 9 depicts the time needed to start all 400
containers and containers. We find that our implementation
outperforms the containerd-shim-wasmtime and containerd-
shim-wasmedge runtimes, which outperformed our implemen-
tation when deploying 10 containers at once. For a deployment
of 400 containers, our integration took respectively 18.82 %
and 28.38 % less time to start all Wasm modules than the
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containerd-shim-wasmedge and containerd- shim-wasmtime
runtimes. However, our implementation shows lower startup
performance for larger deployments than currently available
WebAssembly runtimes supported in crun. When deploy-
ing 400 containers with WebAssembly containers, our work
took 6.93% more time to start the Wasm modules execution
than the most performant crun-Wasmtime runtime integration.
Nonetheless, our approach still presents better startup perfor-
mance when starting 400 Wasm containers than both crun and
runC runtimes with Python containers.

F. Discussion and Overview

Our experiments showed that our implementation delivers
on the goal of lowering the memory footprint of Wasm
containers. Considering the results obtained from the system
using the free command, our solution uses at least 40.0%
less memory to run one pod with a Wasm container than any
other Wasm runtime integrated with crun. At the same time,
our implementation uses at least 10.87% and up to 77.53%
less memory to run a pod compared to runwasi shims with
WebAssembly support. Finally, our integration uses at least
16.38% less memory than Python containers with the crun and
runC container runtimes, the latter being Kubernetes’ default
container runtime. We provide a comprehensive overview of
memory use across all test runtimes in Figure 10. We also
found that our implementation delivers startup performance
comparable to alternative runtimes regardless of the deploy-
ment size, ranging from 10 to 400 pods and containers.
This finding shows that our memory optimization did not
sacrifice startup performance and that Wasm containers are a
competitive alternative to traditional containers such as Python
on Kubernetes.

V. RELATED WORK

Research on WebAssembly’s server-side applications has
highlighted its potential for cloud-native computing. Projects
like WasmEdge, Wasmer, and Wasmtime have focused on
enhancing runtime performance. However, these solutions
often prioritize execution speed over memory efficiency. This
work addresses this gap by integrating WAMR into crun,
emphasizing memory use.

From the best of our understanding, we are the first to
comprehensively benchmark the resource use and performance
of WebAssembly runtimes integrated into container runtimes
with WebAssembly support. Closest to our work, Sangeeta
et al. [27] and Wang [28] provide systematic evaluations of
WASM runtimes. However, these works benchmark WASM
runtimes in isolation, not integrated into container runtimes,
which we show significantly changes the memory and perfor-
mance characteristics of WebAssembly applications.

Below, we highlight several works in the broader research
field of WebAssembly that are adjacent to our research.
Jiang et al. [29] investigate performance issues in server-
side WebAssembly runtimes. They introduce WarpDiff, a
differential testing approach to detect performance issues by
comparing execution times across different Wasm runtimes.
The study applied WarpDiff to five popular Wasm runtimes,
tested with 123 cases from the LLVM test suite, and identified
seven performance issues. These issues, confirmed by devel-
opers, highlight areas needing optimization in Wasm runtimes.
Wiegratz [30] concludes that WebAssembly can complement
Linux containers in cloud computing, offering specific benefits
in security and efficiency. The work suggests that future
developments could further enhance the integration of We-
bAssembly in cloud-native applications, potentially leading to
broader adoption alongside traditional container technologies.

Containerd version 2.0 introduced the Sandbox API [31].
This new API aims to support various sandbox types, in-
cluding those based on virtual machines and WebAssembly,
providing a more flexible way to manage different container
environments simultaneously. Kuasar [32], a Cloud Native
Computing Foundation sandbox project, aims to provide a
secure, efficient, and flexible container runtime for modern
cloud-native applications using this new API. Kuasar includes
a Wasm sandbox, which allows containers to be launched
within a WebAssembly runtime like WasmEdge or Wasmtime
with more runtimes planned for future releases. Although the
Sandbox API is in the experimental phase, it could provide
significant real-world improvements to interoperability and
support for external sandboxing due to containerd being the
default Kubernetes container runtime. Projects implementing
this API, such as Kuasar, might gain rapid traction in the
future, requiring a new iteration of our benchmarking and
integration work.

VI. CONCLUSION

In this paper, we presented the WebAssembly Micro Run-
time (WAMR) integration into the crun container runtime,
demonstrating significant improvements in memory efficiency
and deployment performance. By reducing memory overhead
and improving startup times, our work helps positioning Wasm
containers as a viable alternative for Kubernetes workloads.
Furthermore, our experiments with other runtimes highlight
that different WebAssembly engines can lead to significant
performance variations in Kubernetes workloads, emphasizing
the critical role of runtime selection and optimization in
achieving optimal efficiency in high-density cloud workloads.



Future research will explore advanced runtime optimizations,
multi-tenant scenarios, and broader adoption of Wasm in
cloud-native ecosystems.
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