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Abstract

In this thesis we explore power measurement and modeling within the com-
pute continuum. Specifically, we examine the power consumption of devices
in the compute continuum, spanning from user-facing endpoint devices, like
security cameras or smartphones, to cloud infrastructures. In addition, we in-
vestigate the role of different network standards, that is, WiFi and Ethernet, in
influencing power consumption. We consider the constraints and the practical
hurdles coming with the possibility to combine various devices and the variety
of components within the devices itself, when creating an overarching model to

measure the power consumed by these devices.

A command-line application prototype is developed to analyze power usage
across different compute continuum configurations, employing diverse measure-
ment and modeling techniques. The prototype we developed is adaptable to
different compute continuum configurations, by having different measurement
and modeling techniques. Furthermore, by providing real-time data reporting
and timestamps, the prototype allows calculations of energy use of the mea-
sured devices as well. The prototype’s performance is validated through exper-
iments simulating different configurations of the compute continuum. Results
demonstrate that the prototype accurately measures power usage and adapts
to various configurations. Additionally, the results highlight the trade-offs be-

tween computational power and electrical power.

This study contributes to understanding power usage in extensive computa-
tional activities and promotes sustainability in the tech industry by offering
tools and methodologies to optimize energy consumption across the compute
continuum. All source code, including artifacts for reproducibility, is available

at https://github.com/davidfreina/VU-Thesis-24.


https://github.com/davidfreina/VU-Thesis-24
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Introduction

The continuous evolution of computing technologies has propelled modern society into the

era of the compute continuum, where the boundaries between endpoints, such as mobile

phones, [Internet of Things (IoT)| devices and smart devices, edge, and cloud computing

are increasingly blurred. The concept of a compute continuum refers to a fully integrated
computing architecture that spans from endpoints across edge servers to centralized cloud
infrastructure as seen in Figure While the model only refers to a network of devices
it is used with specialized techniques to enhance resource allocation and data processing
tailored to specific application requirements including speed, data volume, user interaction,
and security. This approach also addresses common trade-offs between the devices in the
continuum, such as balancing available resources with the devices’ proximity to users, to
achieve optimal performance and efficiency.

This integrated ecosystem offers unprecedented computational power and connectivity
due to its complex, distributed infrastructure, which combines diverse hardware, software,
and user needs. However, the inherent heterogeneity of the compute continuum poses a
significant challenge regarding power consumption monitoring. The diversity results in nu-
merous combinations of hard- and software, each with different power needs and profiles,
complicating the process of standardizing power measurement across the ecosystem. This
highlights the need for a power measurement solution that addresses the unique character-
istics of the compute continuum. The urgency to address these challenges is underscored
by growing environmental concerns and a push toward sustainability in the
land communications technology (ICT)| sector. The sector is predicted to use 8% in

the best-case or 51% in the worst-case scenario of the global energy by 2030 (|1]).
In this thesis we explore and address critical questions regarding power measurement

and modeling within the compute continuum.
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Figure 1.1: Reference architecture of the compute continuum (|2]).

1.1 Devices in the Compute Continuum

The computing continuum is a complex architecture divided into three main layers: end-
point, edge, and cloud. Every layer includes a range of devices, each with its specific

features, functionalities, and energy demands.

1.1.1 Endpoint Devices

Endpoint devices are typically the user-facing end of the compute continuum. Examples
of these include smartphones, security cameras, and IoT sensors. These devices are often
equipped with various features, such as cameras or temperature sensors, as well as different
communication modules such as WiFi, Ethernet, and cellular. Endpoint devices are gen-
erally characterized by portability and low power consumption, designed to operate with

minimal power to extend battery life and reduce energy consumption ([2]).

1.1.2 Edge Devices

Edge devices serve as the intermediary layer in the compute continuum, often bridging the
gap between endpoint devices and the cloud. However, they can also take over functions
that would have been executed otherwise by the cloud or endpoints themselves. Common
examples include Raspberry Pis or Nvidia Jetson platforms. These devices are capable

of processing data closer to where it is generated, reducing latency and bandwidth usage.
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Figure 1.2: End-to-end model problems

Edge devices often have greater computational power than endpoint devices, but are gen-
erally still lower-power than cloud infrastructure. They can perform more complex tasks,
such as preliminary data analysis and real-time processing, thus offloading some of the

computational burdens from the cloud (|2]).

1.1.3 Cloud Devices

At the top of the compute continuum are cloud devices, primarily consisting of server
deployments in data centers. These servers provide vast computational resources and stor-
age capabilities that facilitate complex data processing and computing tasks. Cloud-grade
servers are characterized by their high power, with CPUs that can consume more energy
than e.g., multiple smartphones combined (|3]). Despite their significant power require-
ments, these devices offer unparalleled performance and scalability, supporting a wide range
of applications, from big data analytics to machine learning and artificial intelligence (|2]).

In summary, the devices within the compute continuum vary widely in terms of
features, functions, energy requirements, and components. From energy-efficient
smartphones and IoT sensors at endpoints to high-performance servers in the cloud, each
device plays a crucial role in the seamless operation of this layered computing architecture.
Our investigation into devices across all layers aims to identify their energy-consuming
components. This identification is essential because it forms the foundation of our end-
to-end power model design (Figure, ensuring a comprehensive understanding of energy

consumption throughout the compute continuum.
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1.2 Energy Consumption in the Compute Continuum

Monitoring power consumption is essential for optimizing resource utilization, reducing
costs, and minimizing environmental impact. It provides the foundational data needed to
implement effective energy management strategies, making it a critical practice in modern
computing environments.

Within the compute continuum networking forms the backbone of connectivity and data
flow between devices and services, spanning from local networks to extensive cloud infras-
tructures. Therefore it is a significant consumer of power, as highlighted in previous studies
([1]). We review existing methodologies to measure this power consumption, and include
it in our end-to-end model. In addition, we examine the energy consumption of different
network standards, that is, WiFi and Ethernet, in influencing power consumption.

In parallel, we focus on the compute components of the devices that populate the com-

pute continuum. These components present a diverse challenge to accurately model their

power consumption due to the sparse support for hardware-based (HW-based)|

measurement infrastructure and [software-based (SW-based)| measurement in-

terfaces.

SW-based SW-based measurements interfaces obtain their measurement data through

the energy measurement infrastructure already available built into the hardware [4], |5]).

HW-based HW-based energy measurement systems, in contrast to SW-based approaches,
require the use of additional hardware to gather measurement data from computer systems.
Within this category, a distinction can be made between systems that utilize commodity
hardware and those that require specialized hardware, such as purpose-built measurement

boards or FPGA-based technologies ([6]).

Due to this variability in power measurement infrastructure, the development of power
models that operate exclusively on accessible data without the need for specific hardware
support has been a relevant topic in academia for years (e.g., [7] (2003), [8] (2005), [9]
(2010), [10] (2014), [11] (2018)).

Given these constraints and the practical hurdles of comprehensive power measurements,
we design our model to use current power models found in the literature when other

measurement infrastructures are not available.
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1.3 Research Questions and Methodology

From the problems highlighted above, we design a diagram (Figure that highlights the
areas that this thesis will focus on. Furthermore, this helps us to formulate the ensuing
research question: How do we design an end-to-end power model for the compute
continuum?

Our primary focus is on determining the power usage of the network and compute com-
ponents of the devices in the compute continuum. But, a full end-to-end model should also
include e.g., the networking infrastructure between the layers of the compute continuum as
well as additional power consumption not directly related to the devices (e.g., cooling and
lighting in data centers). Additionally, devices have components not related to compute
and networking like storage, memory, or fans which should also be included. However,
due to sparse literature around power measurements of these additional components in the
compute continuum we opt to explore only the compute and network parts.

To measure these parts we will use HW/SW-based measurements or interfaces where
possible. We make this decision based on the examinations in our literature study [6]
where we find that HW-based measurements provide the most accuracy closely followed
by SW-based approaches. However, if obtaining measurement data using HW-based /SW-
based measurement interfaces is infeasible (e.g., due to a lack of interfaces) we turn to
power models. Power models provide us an estimate of power consumption based on some
hardware utilization metric.

Answering this question will significantly improve our understanding of energy utilization
in the compute continuum by helping us understand where and how energy is consumed
with different deployment scenarios. We divide the main research question into several

sub-questions to facilitate clear and precise responses.

1.3.1 Research Questions

RQ-1. What are the power consuming components in the compute continuum?

Problem Description The compute continuum is composed of three layers with each
layer being constructed of multiple, sometimes different, devices. Furthermore, each of
these devices is made with different components (e.g, CPUs, GPUs). Therefore, in order
for us to analyze the power consumption in the compute continuum the first objective

addressed in this thesis is the identification and classification of components responsible
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for power consumption within the compute continuum. Understanding the specific power
consumers in the network and compute infrastructure of the compute continuum is crucial
to developing strategies to measure and model power usage and enhance the sustainability

of these systems.

Methodology To address this issue, a top-down design approach is utilized, employing
quantitative research methods such as statistical modeling and extensive surveys (M1)).
These techniques are designed to precisely quantify and categorize the power consump-
tion in different components of the computing continuum. Special emphasis is placed on

integrating data regarding power usage into a detailed power model.

Contribution The contribution achieved by answering this question lies in the identifi-
cation of the components required to design a comprehensive power model. The research
focuses on these crucial elements with the goal of gaining in-depth understanding of their
power usage to enable a focused examination of potential strategies for power measurement.
The identification of these components provides an important stage in the development of
an all-encompassing power model for the compute continuum that can steer more eco-

friendly computing methods throughout the spectrum.

RQ-2. How can the power use of compute continuum components be accu-

rately measured or modeled?

Problem Description Based on the insights gained from [RQ-I] the core challenge ad-

dressed in this phase is the identification of power measurement interfaces and power mod-

els applicable to the components. Because the availability of [HW-based| and [SW-based|

is not clear for every component we first have to identify their availability. Furthermore,
we can find multiple power models for every component which creates a confusion about
which power model works best for any given component.

Therefore, this identification is essential to evaluate the capabilities to measure power
usage of the components identified in The choice of power models is essential to
enable the end-to-end power model to accurately include all the components in the various

systems of the compute continuum.

Methodology The methodology involves two main steps. Firstly, the abstracted com-
ponents are organized into a theoretical model structure. This abstraction is crucial in

constructing a model that is both comprehensive and understandable, allowing for easier
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manipulation and modification in the subsequent phases of prototyping. Secondly, the ar-
chitecture of the model is constructed. (M2|) This stage requires decisions on the model’s
configuration. Decisions made during this stage determine how accurate that model will

depict real-world power consumption patterns and can scale and adapt to new insights.

Contribution The design phase of this research contributes significantly by developing a
power consumption model that encompasses the components of the network and compute
infrastructure of the compute continuum. In addition, the process includes evaluating the
support for hardware-based energy measurement within the components, enhancing the
accuracy and reliability of the model, where applicable. This structured approach not
only advances theoretical understanding, but also provides a solid foundation for practical

implementations aimed at optimizing power use across the computing continuum.

RQ-3. How do we design an end-to-end power model for compute continuum

devices?

Problem Description Designing the end-to-end power model presents a significant chal-
lenge. Given the vast amount of different devices and components that are identified in
IRQ-1| and could be used within the compute continuum it is important to design a model
that is as adaptable to all possible configurations. The design needs to reflect the insights
gained from answering[RQ-2 and combine the model’s and power usage measurements that

are identified.

Methodology To overcome this problem, design and abstraction (M2)) will be employed.
Based on the insights from and on a set of design requirements an overarching model
combining the different, previously identified, power measurement and modeling techniques

is designed.

Contribution The abstract power model can serve as the foundation of other imple-
mentations for specific configurations. It simplifies the different layers of networking and
computation, from endpoint devices to cloud infrastructure, into a more manageable for-
mat. It can serve as a base for implementing various power models and evaluating them
against each other or to compare different configurations of the compute continuum with
one another. Furthermore, it is the first time (known to the authors) that a power model

for multiple components and devices across different infrastructures is designed.
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RQ-4. How can we prototype the end-to-end power model to estimate the

power consumption in the compute continuum?

Problem Description The central challenge addressed here is the implementation of
the design outlined in [RQ-3] This involves developing a tool that can accurately measure
and analyze the power of different deployment configurations in the compute continuum.
However, due to the large design space identified in the previous research questions it is
impossible to implement a prototype for all possible configurations. However, we implement
a prototype that is working for one configuration of devices and demonstrate the conceptual
idea behind the end-to-end power model.

Methodology The approach focuses on the prototyping and experimental vali-
dation phase of the tool. A command-line application is developed, enabling the
analysis of power usage of deployments in the compute continuum. The tool is designed to
provide real-time estimates of power consumption. It will undergo testing against workload-
level benchmarks. This process is designed to evaluate the tool, ensuring that it can reliably
measure power consumption under various operational conditions.

Contribution The prototyping and validation phase is crucial as it will reveal any dis-
crepancies between the model’s implementation and design, pinpointing areas that may
require adjustments. Furthermore, in line with open science principles , the tool
is developed as open-source software. This openness promotes community contributions
and ongoing enhancement, increasing the tool’s adaptability and utility. This transparent
and collaborative approach advances research in energy-efficient computing and fosters an

environment of continuous innovation, contributing significantly to the field’s development.

1.3.2 Methodologies

One (or more) of the following methodologies are employed above:

M1 Quantitative research (statistical modeling, simulations, comprehensive surveys) |12],
[13];

M2 Design, abstraction, prototyping |14]-|16];

M3 Experimental research, designing appropriate micro and workload-level benchmarks,

quantifying a running system prototype [17], [18];

M4 Open-science, open-source software, community building, peer-reviewed scientific

publications, reproducible experiments [19]-]22].
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Figure 1.3: Thesis Outline

1.4 Societal Relevance

This thesis addresses the critical and socially relevant issue of energy consumption in the
compute continuum. This is a concern that resonates deeply with ongoing global efforts

to mitigate climate change and reduce the environmental footprint of the digital age. In

response to advances in technologies such as the [[oT] [Artifical Intelligence (AI)| and big

data analytics, the demand for computing power increases. The research carried out here
is pivotal, as it seeks to develop models and methodologies to measure and optimize en-
ergy use on various networking and computing devices. By providing tools to determine
the energy usage of components in the compute continuum, this thesis contributes to ob-
tain the knowledge of potential carbon emissions associated with extensive computational
activities, and therefore promotes sustainability in the tech industry. Through these con-
tributions, the thesis not only addresses a key technological challenge, but also aligns with
societal values and priorities, underscoring the importance of energy-conscious innovations

in securing a sustainable future for technology-driven societies.

1.5 Thesis Outline

This thesis is organized as follows (Figure . First, in the Background & Related Work
(Chapter , we provide a review of related work, situating our research within the broader
context of power measurement and modeling.

Subsequently, Chapter [3| identifies and analyzes the power consumers across different
layers of the compute continuum, consisting of endpoint, edge, and cloud devices. This
chapter lays the groundwork for understanding the specific power consumers critical for
developing our power model.

Chapter [ discusses the design of our end-to-end power model. We outline the design
requirements and describe the various measurement methodologies employed to accurately
capture power consumption across the compute continuum.

In Chapter[5] we present the implementation of our prototype. This includes the selection
of power models for different components, as well as the implementation of our own Intel

RAPL measurements.
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Chapter[6] covers the experimental evaluation of our prototype. We detail the experiment
design and setup, present the results, and validate our Intel RAPL implementation against
other tools. We also assess the compliance of our prototype with the design requirements
outlined in Chapter [4]

Finally, Chapter [7] concludes the thesis by summing up the answers to the research
questions formulated in the introduction. We summarize our findings, discuss their impli-
cations, and suggest directions for future research. Artifacts for reproducing the working
environment, including the prototype and experimental setup, are provided in the ap-

pendix.

10



Background & Related Work

The exploration of energy consumption within parts of the compute continuum has gar-
nered substantial interest, with numerous studies contributing to the understanding of
power usage across the various layers. However, to the best of our knowledge there is no
methodology or tool that evaluates a end-to-end power model throughout all the layers of

the compute continuum.

The following sections review key contributions, methodologies, and findings that support

the research presented in this thesis.

2.1 Power Measurement and Modeling

Several methodologies for power measurement have been explored, including both hard-
ware and software-based approaches. Hardware-based solutions, such as PowerMon/2
[23] and WattProf [24], provide detailed power consumption data at the component level
but often face scalability and deployment challenges due to their intrusive nature. Con-

versely, software-based solutions like Intel RAPL) [5] and AMD’s [Average Power Manage-|

[25] offer accessible and less intrusive means to measure power consumption,
leveraging model-specific registers (MSRs) to report energy usage directly from the CPU
[26].

Power modeling for the different devices in the layers of the compute continuum has
also been studied extensively. The following subsections list various studies conducted to

identify power models for different aspects of these devices.

11
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2.1.1 Endpoint Devices

A study conducted by Jung et al. [27] (2012) provide an extensive look into power modeling
for smartphones. In this study they provide models for CPU, GPS, LCD display, 3G,
WiFi including all the required coefficients required to implement these models. They
use the models from this study to provide a Android-based energy metering system called
AppScope [28]. They follow-up this study in 2017 and additionally provide models for
GPU, 2D graphics accelerator, video processor, LTE, OLED display, camera, and audio
interface [29]. However, in their second study they do not provide the coefficient values,
which makes it much harder to reimplement their models.

A more recent study conducted in 2019 [30] explores the accuracy of artifical neural
networks for predicting mobile GPU power data based on performance counters. They are
able to show impressive results with a mean relative error of 4.4%. In comparison with a

linear regression model they achieve 3.3x more accurate results.

2.1.2 Edge Devices

For edge devices our main focus point are SBCs (single-board computers) (e.g., Raspberry
Pi, Nvidia Jetson). Kaup et al. [10] (2014) present PowerPi, a power consumption model
for the first generation Raspberry Pi. They include CPU, Ethernet, and WiFi consumption
in their model. In 2018 [31] they follow up on their study and analyze multiple different
SBCs (Raspberry Pi B, Pi 2 B, Pi 3 B, Cubietruck, Odroid C1 & C2) in order to understand
how their energy efficiency has progressed throughout the years. They present all of the
equations needed to reimplement their models.

Ardito et al. |11] create power models for a Raspberry Pi 2 B similar to first study by
Kaup et al. [10]. In their study they also create a CPU and Ethernet model with the
main difference being, that their evaluation shows that it is better to construct a split
model rather than a full model for the NIC. They decide on this split model based on the

observation of a jump in power usage between 40 and 50Mb/s.

2.1.3 Cloud Devices

In our prototype, CPU power measurement relies on Intel RAPL, a methodology previously
explored by Khan et al. [32] and Hackenberg et al. |26]. These studies delve into the
accuracy and granularity of data provided by Intel RAPL. Additionally, other research has

validated the accuracy of Intel RAPL’s memory power measurement data [33], [34].

12



2.1 Power Measurement and Modeling

Regarding Ethernet energy usage, Reviriego et al. |35] and Christensen et al. [36] con-
duct studies that emphasize the energy-saving potential of Energy Efficient Ethernet. To
establish this, they first analyze the energy consumption of traditional Ethernet, offering

comprehensive data on this aspect.

13
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Power Consumers in the Compute

Continuum

The compute continuum is a computing architecture that consists of three layers: endpoint,
edge, and cloud (Figure[3.1)([2]). Every layer in itself can be composed of different devices,
ranging from power- and resource-limited IoT sensors as endpoints to cloud infrastructures
with abundance of available resources. To connect the layers of the compute continuum
different network standards (like cellular, WiFi, and Ethernet) can be employed.

In accordance with the first step in conceptualizing an end-to-end power model
for the compute continuum is to identify the core components that are using energy. This
identification is necessary due to the diverse nature of devices and components that can be
employed across all of the layers. Therefore, in order to identify these components we first
must identify devices across all layers in the model. After identifying these devices, we
can analyze their composition of various components and assess what affects their energy
consumption (Figure [3.2)).

The following sections do not aim to provide a complete overview of all possible devices
and sources for energy usage in the compute continuum. They should rather serve as an

overview and help to enable further examinations.

3.1 Classification

To establish a standardized notation for classifying the power consumption of various
components within the compute continuum, a literature review is conducted. The goal is
to identify the maximum power values of different components, which are then used to

create a classification system.

15
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Figure 3.1: Overview of the compute con-
tinuum with endpoints, edge servers and  Figure 3.2: Energy impact of components
cloud infrastructure ([2]). in the layers of the compute continuum.

First, a review of existing literature is performed to gather data on the power con-
sumption of components such as CPUs, GPUs, network interfaces, memory modules, and
sensors across endpoint, edge, and cloud devices. Sources included peer-reviewed journals,
technical reports, and technical specification documents that provide empirical data on
maximum power usage under different operating conditions. The collected data is normal-
ized to a common unit to facilitate comparison. Power consumption values are converted
to watts (W) where necessary, ensuring that the power usage of different components could
be compared directly, irrespective of their original measurement units.

Next, based on the normalized data, power consumption thresholds are defined to cate-
gorize the components. The thresholds are determined using statistical methods to ensure
that the classification was both meaningful and reflective of real-world variations. The

categories are defined as follows:

e Components with significantly high power consumption, such as high-performance

GPUs, are classified as "+-+";

e Components with above-average power consumption, such as displays or cameras,

are classified as "+";

e Components with average power consumption, such as wireless network interfaces

and memory modules, are classified as "0";

16
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e Components with below-average power consumption, such as wired network inter-

faces, are classified as "-";

e Components with significantly low power consumption, such as ultra-low power com-

ponents, are classified as "-"

It is important to note that the classification are not comparable between different layers
of the compute continuum, because the maximum power consumption values would be to
far apart (e.g., a cloud-grade CPU > 100W compared to a smartphone CPU with < 10W).

Each component within the compute continuum was then classified according to the es-
tablished categories. This classification was based on the maximum power values identified
during the literature review. For instance, high-performance GPUs, which were found to
consume power in the range of hundreds of watts, were classified as "++", while low-power

sensors, consuming power in the milliwatt range, were classified as "-".

3.2 Identifying Power Consuming Components

In this section we are examining the power consuming components of the different devices
in the layers of the compute continuum . To identify these power-consuming com-
ponents, a literature survey is conducted. Keywords related to the different layers in the
compute continuum are derived from prior studies and literature surveys. Peer-reviewed
publications are queried using these keywords to gather data on energy consumption across
various devices and components.

Additionally, the SPEC-RG reference architecture for the compute continuum provided
a baseline for identifying devices of the compute continuum. The classification of energy-
consuming components is based on their frequency of usage and the availability of mea-

surement data in the literature.

3.2.1 Endpoint Devices

Endpoint devices represent the final stage of processing and connecting to users. They
can be limited in terms of resources and energy and can be location-independent (e.g.,
smartphones) (|2]). Endpoint devices are devices such as mobile phones, sensors,
[Frequency Identification (RFID)| tags, and various other devices that form the user-

facing endpoint of the compute continuum. These devices are crucial for collecting and

transmitting data (|37]).
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Component Energy impact
CPU ++

GPU ++
Display +
Camera +

Communication modules

Cellular ++

Wi-Fi o

GPS -
Sensors - -

Table 3.1: Overview of energy using components of endpoint devices in the compute contin-
uum ([|27]-[30], [38]-[41]).

The energy consuming elements within these endpoint components are presented in Ta-
ble We identified sensors, communication modules (like Wi-Fi and cellular chips),
processing units (CPUs, GPUs), cameras, and any related displays or user interface fea-
tures. Other components like Bluetooth modules, memory, or storage devices are omitted
due to the lack of data in the available literature regarding their energy usage. The com-
ponents identified frequently use energy for tasks such as data acquisition and processing
or data transmission, which are crucial to their functionality in the compute continuum
(B7D)-

Multiple studies (|27]-[30], |38], [41]) detail the energy consumption of various compo-
nents in smartphones. They are able to highlight significant differences in energy usage be-
tween the various components. Furthermore, multiple studies ([39], [40], [42], [43]) analyze
various [[oT] devices like Arduino’s and low-power sensor ASICs. We use the measurement

data of these studies to classify the energy impact of the different components in Table

3.2.2 Edge Devices

Edge devices refer to computing units located near the periphery of the network, close to
data sources and endpoint devices. They are a fundamental component of the compute
continuum, and their use aims to bring computation and data storage closer to the location
where it is needed to improve response times and save bandwidth. These devices include
edge servers (e.g., Raspberry Pi, Nvidia Jetson) and networking devices that handle pre-
liminary data processing. Their location helps to reduce the need to transmit data back

to cloud infrastructure. (|44]-]47]) In terms of design edge and cloud components are the
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Component Energy impact
GPU ++
Accelerators ++
CPU +
Communication modules
Wi-Fi o
Ethernet -

Table 3.2: Overview of energy using components of edge devices in the compute continuum
(13]. 110], [31], [44], [49]-[51]).

same. Therefore, the case for edge devices comes from the aforementioned locality advan-
tage ([2]). With the difference being that edge devices should be able to offload between
the cloud and edge as well as different edge devices ([48]).

The energy consuming parts of edge devices are presented in Table

We identified their processing units (CPUs, GPUs, Accelerators), and communication
modules (Wi-Fi, Ethernet). Other components that are present in the edge devices like
storage hardware or memory are omitted due to the lack of data in the available literature
regarding their energy usage. GPUs, which are used mainly for their high throughput
and parallelization, are particularly known for their high power consumption (]3|, [50]).
Similarly, specialized hardware accelerators, while offering high performance, also consume
significant energy (|3]). In addition, communication and memory components also con-
tribute to the overall energy consumption of edge devices although not as extensively as

the processing components ([10], |46], [47], [52]).

3.2.3 Cloud

In the compute continuum, the cloud serves as both a central coordinator and an offload
destination, managing resources and scheduling workloads across endpoints, edge, and
cloud for effective task allocation. It offers substantial computing and storage capacity
for resource-demanding applications that edge devices cannot handle. Typical cloud com-
ponents include high-performance servers, storage solutions, and sophisticated networking
infrastructure, ensuring scalable and reliable computation and data management |[2].

Cloud components, such as CPUs, GPUs, memory and storage systems, and cooling
systems, are energy-intensive due to their high computational tasks [58]. However, due to
missing data about many of these components we limited our research on the components
in Table 3.3
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Component | Energy impact
CPU ++

GPU ++
Accelerators 4+
Memory o
Ethernet -

Table 3.3: Overview of energy using components of cloud devices in the compute continuum
(18], 23], [24], [53]-57))-

3.3 Identifying Measurement & Modeling Methodologies

3.3.1 Power Measurement

This section provides a detailed overview of available power measurement methodologies.

The methodologies are categorized into two primary types: and

measurement systems.

3.3.1.1 Software-Based Energy Measurement Systems

SW-based measurements do not rely on additional hardware but instead utilize the energy
measurement infrastructure built into the hardware. These systems use
lregisters (MSRs)|and are present in hardware manufactured by e.g., Intel and AMD.
provide detailed energy usage data directly from the processor. Tools like Intel’s Running
Average Power Limit (RAPL) and AMD’s Average Power Management (APM) access this
data to estimate energy usage. NVIDIA’s Management Library (NVML) offers similar
capabilities for GPUs [6].

3.3.1.2 Hardware-Based Energy Measurement Systems

HW-based systems require additional hardware to gather measurement data and can be
divided into two subcategories: commodity hardware and specialized hardware. Systems
built on commodity hardware include external power meters and smart Power Distribution
Units (PDUs), which are cost-effective and widely used but generally lack the ability to
provide fine-grained, component-specific data. Improvements over time have enhanced
their accuracy and measurement frequency. Specialized hardware has the advantage of
employing custom-built hardware to offer superior measurement capabilities [6]. Examples

include:
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e PowerMon and PowerMon2 ([23]): These provide in-band monitoring at the compo-

nent level with high measurement frequencies.
e Powerlnsight ([59]): Offers 15 measurement channels and out-of-band data collection.

o WattProf (|24]): Features a monitoring board as a PCle expansion card with up to
128 measurement channels and high-frequency data collection, using a Xilinx Spartan

FPGA for precise monitoring.

3.3.2 Power Modeling

In case of unavailability of the aforementioned measurement systems we can use power
modeling as a fallback. Power models generally use one or multiple resource metrics to
estimate the power consumption of a component. The sections that follow will highlight
the different metrics used by various power models found in the literature. We choose
those power models to highlight that power consumption data for one component may not
only be modeled with one (or more) specific metrics but rather that it is possible to use

different metrics to get to the same result.

3.3.2.1 Endpoint Devices

Sensors According to Martinez et al. [43] a model for the energy usage of data acquisition
from sensors depends on the category of sensing. They classify the monitoring of sensors
as "regular" or "event-driven". For regular sensors the energy per acquired sample as well
as the number of samples dedicated the amount of energy used. For event-driven ones the

probability of an event occurring is additionally taken into account.

CPU According to the energy consumption values presented by Yoon et al. [28], the
CPU’s power usage is highly dependent on its utilization. The power usage spikes during
tasks that require a big amount of processing, while consuming less than a quarter of this
spike during idle. Additionally, in their follow-up study Yoon et al. [29] clearly demonstrate
that the CPU power consumption is also highly dependent on the core count. Furthermore,
Jung et al. [27] shows that the CPU power usage is also proportional to the CPU frequency
(higher frequency = higher power usage).

GPU As evidenced by Yoon et al. |29] the GPU energy usage is mainly influenced by its
utilization. Furthermore, they show that the GPU clock frequency also plays a vital role

in the amount of energy used.
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Display Furthermore, the display is identified as a major energy consumer, which has a
particularly high energy usage impact when applications keep the screen on for extended
periods ([28], [29], [41]).

Camera The camera captures and transfers image data from an image sensor with a
specified resolution, affecting its power consumption. The size of the transferred pixels
depends on the resolution of the image frame and the number of frames per second (FPS).
The power model for the camera is calculated using number of pixels per second, which

are acquired from the image sensor and determined of the frame rate and resolution (|29)).

Communication Modules The WiFi module shows variable energy consumption that
correlates with packet transmission rates. This is evidenced by the data shown in 29|, [42]
and the model presented in [9).

The components that most impact energy (CPU, GPU) of modern smartphones remain
under a peak power usage of 10W (]3], [29]). Nevertheless, endpoint devices significantly
impact the energy consumption of the compute continuum due to their abundance and
constant activity. The energy usage is driven not only by the computational needs, but also
by the regular data transmission over the network, a process that also requires considerable

energy, especially when using cellular networks ([37]).

3.3.2.2 Edge Devices

CPU Similar to the findings in the previous section the energy usage of the CPU is
highly dependent on its utilization, frequency and core count. This is further evidenced

by the findings of Kaup et al. [10] and Halawa et al. |50].

GPU Similar to the CPU Rungsuptaweekoon et al. [49] demonstrate that the GPU power
consumption is proportional to the utilization and frequency. They conduct their experi-
ments on two different Nvidia Jetson devices. Furthermore, they use different performance
profiles and variation of default and max. clock to produce their results. Comparable re-
sults are presented by Hanafy et al. [44] with a similar Nvidia Jetson platform and varying

neural network models.

Accelerators Accelerators, especially TPUs, break the trend previously established by
CPUs & GPUs for having a power consumption highly proportional to their utilization.
Jouppi et al. [60] evaluate that the power consumption of a TPU at 10% utilization is

22



3.3 Identifying Measurement & Modeling Methodologies

already 88% of the power consumption it reaches at 100% for a compute-bound task.
A non-compute bound task is even worse with 94% of the power consumption at 10%

utilization.

Communication Modules Kaup et al. |31] create WiFi models for various edge devices
based on their bandwidth. Similar to this they and Ardito et al. |[11] provide models for
Ethernet based communication modules also using the bandwidth.

Given their significant power consumption, incorporating edge devices into the model
is crucial to accurately assess and manage the total power consumption of the compute
continuum. This is particularly important in scenarios where such devices are deployed,
like in multi-tenant workloads where many devices perform a significant amount of local

processing. (|2])

3.3.2.3 Cloud

CPU Due to their similar nature to CPUs in endpoint and edge devices the power usage
of CPUs in cloud devices is also dependent on their utilization, core count and frequency.

These dependencies are highlighted by Zhang et al. [55].

GPU Wihile studying energy efficient interference on edge devices Hanafy et al. [44]
provide valuable insights on the power consumption of GPUs in cloud systems as well.
They show that the energy use of a GPU is proportional to its utilization and that the

power consumption has a linear relationship to the frequency of the GPU.

Accelerator The same accelerators technologies can be used for cloud devices and edge

devices. Therefore, the same points as above apply.

Memory We are unable to find any literature on the power consumption of modern
memory-storage sandwich architectures. However, Desrochers et al. |33] are able to present
findings that show a clear correlation between last level cache misses and memory power
usage. They obtain this data using Intel RAPL on a Haswell system with DDR3 memory.
This pattern is clearly visible in multiple different benchmarks that stress various parts of

the system.

Ethernet Contrary to previous discussed approaches, network power consumption can
also be modeled using packets per second (pps). Exemplary data for such a approach can

be found in [35].
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3.4 Conclusion & Future Work

In this chapter, we address two critical research questions concerning the power consump-
tion within the compute continuum. These questions are fundamental to developing a
comprehensive understanding necessary for creating an end-to-end power model.

[RQ-T] What are the power-consuming components in the compute continuum?

Through a detailed analysis, we identify the components responsible for power consump-
tion across the compute continuum. Our findings reveal that components such as CPUs,
GPUs, communication modules, and various sensors are significant contributors to power
usage in endpoint, edge, and cloud devices. This identification process is essential as it lays
the groundwork for constructing a detailed end-to-end power model. The comprehensive
classification of these components provides a necessary foundation for further analysis and
model development, ensuring that all major power consumers are accounted for in the
subsequent phases of this research.

How can the power use of compute continuum components be accurately measured
or modeled?

Building on the insights gained from answering the first research question , we
explore various methodologies for measuring and modeling the power consumption of these
identified components. We first examine two different measurement technologies: software-
based and hardware-based measurements. Because they are not always readily available
we also look at power models that can be used as a fallback mechanic. For the power
models we identify the relevant resource metrics for each component in each layer of the
compute continuum. Furthermore, we show that the power usage of one component cannot
only be modeled with one metric but often times it is possible to use different metrics to

obtain the same result.

3.4.1 Future Work

Many other components are required to provide a full end-to-end view of the compute
continuum. These include but are not limited to: memory systems with high operating
frequencies, cooling systems for optimal data center temperatures, storage devices like hard
disks and SSDs, and networking equipment. However, due to missing data in the literature
we are unable to identify how significant these components are in regard to their energy
impact of the compute continuum.

In conclusion, we successfully address both research questions & . By iden-

tifying the power-consuming components and establishing robust methodologies for their
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measurement and modeling, we have set a solid foundation for the subsequent development
of a comprehensive end-to-end power model. The insights gained here will be pivotal in

guiding the design and implementation phases discussed in the following chapters
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4

Designing the Model

The following sections outline the design requirements and measurement methodologies
essential for developing a end-to-end power model for the compute continuum. We de-
fine "end-to-end" as encompassing the devices and components (see Chapter [3) directly
involved in executing workflows within the compute continuum. This definition explicitly
excludes additional hardware, such as data center cooling systems, which do not participate
directly in the workflow execution.

Identifying and understanding the requirements and methodologies outlined in the fol-
lowing sections is crucial for making informed decisions about the most suitable approaches

for power modeling across diverse deployment scenarios.

4.1 Design Requirements

In this subsection, we outline the set of requirements for the model. This process enables
us to understand why specific research directions are pursued, facilitating an informed
decision on the most suitable methodology for end-to-end power modeling.

Table presents the design requirements and Figure shows an overview of the
different parts that are relevant for the model. In the subsequent paragraphs, we will

discuss the rationale behind these requirements.

Adaptability ( DR-1) In the previous Chapter [3| we discuss the diversity of the com-
pute continuum and its devices. To accurately model the power and energy from end-to-end

it is necessary to ensure that the model is adaptable to various configurations. Each com-

ponent outlined in Table Table and Table must be monitored to achieve a
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1D Description

DR-1 | The model must be adaptable to different deployment scenarios, with a variety

of devices and components being present

DR-2 | The model must have sane default values that can be supplemented in the event

of missing data

DR-3 | The model must use direct measurements where available and fall back to pre-

dictive measurements

DR-4 | The model must measure power

DR-5 | The model must measure in a fixed time interval or give time information about

the measurements to allow calculations of energy usage

DR-6 | The model must be context aware to model only the components present in the

given configuration

DR-7 | The model must report the monitoring data in real-time

Table 4.1: Design requirements for the model

end-to-end power model of the compute continuum.

Stability ( DR-2) Additionally, it must be ensured that the data required by the pre-
dictive power models is available and otherwise sane defaults must be used. These defaults
should be obtained either by testing and finding them as described for each model or

alternatively (if applicable) values from the literature must be used.

Accuracy ( DR-3) To achieve as accurate results as possible the model must use mea-
surements available directly, like RAPL or HW-based measurements, or alternatively fall

back to predictive models if the measurement data cannot be gathered directly.

Power Measurement Capability ( DR-4) Measuring power instead of energy is a
necessary requirement for the model because energy is the integral of power over a period
of time. Therefore, it is much harder to measure energy because it requires a additional
information (execution time) in advance. However, when measuring power and providing

information about time it is trivial to calculate the energy usage.

Timing ( DR-5) For continuous or long-term monitoring the model must either work
in a fixed time interval or give measurement times to the user to allow calculations of the

used energy instead of power.

!(Colors indicate affiliation to requirement)
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Figure 4.1: Overview of the mode

Context Awareness ( DR-6 ) The model should be able to selectively adapt to the
components present in the system(s) it is monitoring to prevent unnecessary overhead and

possible wrong measurements.

Real-Time Monitoring ( DR-7 ) For the system to be easy to use it should report
real-time power values to the user. This enables users to quickly evaluate the power usage

of their system.

4.2 Measurement Methodologies

In this section we discuss different methodologies that can be used to measure data from the
components of the devices in the compute continuum. Due to the diversity of device and
deployment configuration it will not be feasible to decide on one measurement methodology
that will be used throughout the end-to-end model. Choosing the right measurement
methodology will rather be a component-by-component based decision process and it will
highly depend on the requirements of each methodology. The selection of methodologies
is based on the taxonomy presented in [61] as well as the taxonomy from our literature

survey [6].

4.2.1 Hardware Measurement

While commodity hardware power meters can be used to measure a entire device, special-

ized hardware is required to enable detailed measurements of specific components. Projects
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like PowerMon /2 23|, WattProf [24] or PowerInsight [59] provide component-level granu-
larity power measurements.

External devices are compatible with various bare-metal machines but the compatibil-
ity for endpoint and edge devices is not necessarily given. However, where compatible,
hardware-based data collection methods provide high accuracy on account of deployment
difficulties due to their intrusive nature. Additionally, poor scalability is a challenge, as
retrofitting power metering devices on every device in a compute continuum deployment
can be difficult depending on the number of applicable devices (6], [61]).

To use such devices in the end-to-end power model the following requirements must be

satisfied:

e Availability: While it is possible to retrofit internal measurement devices, they do

not come pre-deployed with any device.

e Compatibility: The interal measurement devices work based on the ATX specifi-

cation for [Power supply units (PSUs)l Therefore, such a solution is not applicable

for devices without a compatible power supply (loT]|sensors, phones, etc...).

e Interface: The measurement devices need to provide an interface to allow obtaining

the measurement data on the system itself to be used in the end-to-end power model.

4.2.2 Direct Energy Interface Measurement

The support of manufacturers for integrated energy measurement methodologies starts to
appear in 2011 when both Intel and AMD include new measurement capabilities in their
respective CPUs |26]. Those measurement interfaces are available to the kernel through
that provide information on the energy usage of the processor. Intel’s Running
Average Power Limit (RAPL) [5] and AMD’s Average Power Management (APM) are two
vendor-specific tools that provide the energy usage of the processor to be accessed through
a kernel module. These two tools derive their estimates by accessing the data stored in
[26]. A third manufacturer, NVIDIA, also introduces API commands one year later
in their NVIDIA Management Library (NVML) [62] that allow users to obtain energy and
power measurement data.

Measuring power or energy using direct interfaces is dependent on the availability of
IMSRs|l Therefore, it is up to the vendor of any given component if this measurement
methodology is feasible. Furthermore, accessing the interfaces of a kernel module can

require administrative access on a machine.
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Figure 4.2: End-to-End power model design

Therefore, to use direct energy interface measurements in the end-to-end model a com-

ponent needs satisfy the following requirements:

e Availability: The component must include that report the power or energy

usage.

e Interface: A kernel module needs to be available that exposes the to the user.

4.2.3 Power Models

Last but not least, we power modeling based on the resource usage or utilization of a
component can be used to obtain power data of a system. We analyze the resources
that influence the power usage of various components in the previous Chapter While
power models should be considered least accurate compared to the previous methodologies
they still help to provide invaluable insights when other methodologies are not available.
However, many power models are able to estimate the power consumption of a component

with low deviation of better measurement methodologies.

4.3 Model Design

We design the end-to-end power model to monitor and measure power consumption across
the compute continuum, from endpoints and edge devices to cloud infrastructure. The
model’s design, as illustrated in Figure integrates the previously discussed measure-

ment and modeling methodologies to ensure a proper model of the compute continuum.
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Deployment on Each Device The model is designed to be deployed on each device
within a given compute continuum configuration. The deployment process involves select-

ing the appropriate power data source for each device based on its capabilities.

Power Data Sources The model uses a combination of[HW-based| and [SW-based| power

data sources to gather power consumption data. The diagram (Figure includes the
same exemplary HW- and SW-based measurement interfaces as mentioned before (Sec-
tion [4.2). If these power data sources are not available the models uses power models from

the literature to substitute missing power data.

Power Models Where direct measurements from HW-based or SW-based sources are
not available or feasible, the model employs predictive power models tailored for specific
components. These models use resource utilization metrics (such as CPU usage, network
bandwidth, and GPU load) to estimate power consumption. The different resource utiliza-

tion metrics are previously discussed in Section [3.3.2

Results The gathered data is processed to provide real-time power consumption metrics

and detailed insights into the power usage of each device.

4.4 Conclusion & Future Work

In this chapter we demonstrate the process of designing an end-to-end power model for
the compute continuum. The chapter begins by establishing the fundamental require-

ments and constraints, ensuring the model’s relevance and adaptability to various config-

urations within the compute continuum. We integrate [HW-based| and [SW-based| power

measurement techniques, in our model to provide accurate power consumption estimates.
Furthermore, we add power models in the end-to-end model if HW- or SW-based power
measurements are infeasible to provide power data.

The model design emphasizes modularity, allowing it to be tailored to specific devices
and deployment scenarios. This adaptability is crucial for reflecting the diverse nature
of the compute continuum. By incorporating insights from previous research questions,
particularly the identification and classification of power-consuming components (RQ-1)),

the model achieves a good representation of power usage in the compute continuum.
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4.4.1 Future Work

Future work for the power model should focus on expanding its scope to include addi-
tional components and layers are not yet integrated. While the current model provides
a robust framework for incorporating missing components of the devices in the compute
continuum, it lacks support for parts of the compute continuum that span exist between
layers. Specifically, future development should aim to incorporate networking infrastruc-
ture between layers, as well as additional hardware such as cooling systems and lighting
infrastructure in data centers. Including these elements will enhance the model’s compre-
hensiveness and accuracy, allowing for a more detailed and holistic understanding of power
consumption across the entire compute continuum.

In conclusion, this chapter successfully addresses the research question regarding

the design of an end-to-end power model for the compute continuum.
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Implementing a Prototype

This section answers [RQ-4t How can we prototype this model to estimate the power con-
sumption in the compute continuum? Implementing the model introduced in the previous
section is necessary to validate it. However, due to the large model design space it is
only feasible to implement a prototype. This prototype covers a subset of all possible
components.

To implement the prototype we select one device for each layer of the compute continuum
(endpoint, edge and cloud). Section presents the selection of devices.

We only implement the components relevant to the workflow we will be validating the
prototype against in Chapter [l Therefore, Table only lists a subset of all the compo-
nents previously identified in Chapter [3]and shown in Figure [5.1]

Furthermore, to comply with the design requirements outlined in Chapter [d] we also
implement a Intel RAPL measurement for the cloud-grade server. This Intel RAPL mea-

surement implementation is explained in detail in Section [5.4]

5.1 Device Selection

The decision to use a smartphone is driven by the increasing amount of modern smart-
phones and the identification as endpoint devices in the compute continuum. Smartphones
are equipped with powerful cameras and processing units, making them ideal for tasks re-
quiring image acquisition and initial processing. Additionally, they are portable and widely
available, making them a practical choice for a variety of applications in both research and
industry settings. Last but not least, they are powered by batteries which makes them a

valuable target for power consumption analysis.
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Figure 5.1: Peak power usage of components for device selection.

Furthermore, we choose the Raspberry Pi as an edge server due to its balance be-
tween popularity, performance, energy efficiency, and cost-effectiveness. The Raspberry
Pi is widely used in edge computing scenarios because it provides sufficient computational
power to handle various tasks while maintaining low power consumption, which is crucial
for sustainable and scalable edge computing solutions [31]. On the other hand, a cloud-
grade server is included to represent the high-performance end of the spectrum, where
extensive computational resources and scalability are available. This allows us to evaluate
the power model’s performance across different layers of the compute continuum, from
resource-constrained edge devices to powerful cloud servers.

We considered alternative configurations such as using dedicated industrial cameras for
the publisher or more powerful edge devices like Nvidia Jetson boards. However, a lack
of available hardware as well as the fact that the chosen setup provides a good balance
between accessibility, performance, and relevance to common real-world scenarios leads us
to decide on the selected components.

This configuration fits well within our prototype as it reflects common deployment sce-
narios in edge and cloud computing. It provides a realistic and practical framework for

evaluating the power models under different conditions, ensuring that the findings are
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Design of the Prototype

applicable to a broad range of applications in the compute continuum.

Component | Smartphone (End- | Raspberry Pi (Edge) | Cloud-grade server
point) (Cloud)
CPU Snapdragon 600 @ | ARM Cortex-A53 @ | Xeon Silver 4210R @
1GHz 1Ghz 2.4Ghz
Network | Wi-Fi Ethernet Ethernet
Camera 1280x720 n.a. n.a.

Table 5.1: Selection of devices for the prototype

5.2 Prototype Design

Figure illustrates the overarching design of our prototype. The components Energy-
Input and EnergyOutput are implemented as abstract base classes using the abc package
in Python. This design choice ensures that the prototype remains modular and facilitates
easy extensibility for incorporating additional components or models in the future. By
creating subclasses of the Energylnput class, various power models or other power mea-
surement interfaces can be seamlessly integrated. Similarly, different output formats can
be added by subclassing the EnergyOutput class, maintaining the flexibility and scalability
of the prototype.

5.3 Model Selection

During the research to identify components and their energy impact for Chapter [3| we are

additionally able to find many different power models for various devices. We then choose

37



5. IMPLEMENTING A PROTOTYPE

power models based on the device selection in Table [5.1] Our main focus when selecting
the power models is if they are evaluated with external HW-based measurements. High

compliance with these measurements ensures the quality and accuracy of the models.

5.3.1 CPU

In general CPU models are dependent on three factors: utilization, core count, and fre-
quency [29]. To simplify this for our prototype implementation we have fixed the frequency
of the endpoint and edge devices at 1GHz. This removes the frequency as a variable from
the models.

Based on the findings in [29] we can obtained the following power model for the CPU of

the endpoint device:

m

PCPU = Z( gore * ugore + i(;ile) + PUTLCOTG (51)
c=0

where Popy denotes the overall CPU power usage, (3 the power coeflicient per core,

C
core

C

uCOT‘B

the utilization per core, P, the idle power usage per core, and Pyjcore the base
power usage.

Based on the findings in |31] we can obtained the following power model for the CPU of
the edge device:

Pcopu = Pyase + Bri ¥ u (5.2)

where Popy denotes the overall CPU power usage, Pys the base power usage, Sp; the
power coefficient, u the utilization.
We do not select a power model for the cloud device because it is measured using Intel

RAPL in our prototype.

5.3.2 Network

Modeling network power usage can be done using bandwidth- or packet-based utilization
models [10], [29], [31], [35]. When considering wireless communication equipment like WiFi
or cellular there are other factors impacting the energy usage such as signal strength or
transmission mode [29]. Even though the endpoint device in our test is supposed to use
WiFi, we will only simulate this due to the virtualized nature of our testing equipment.
Based on the findings in [29] we can obtained the following power model for the WiFi

interface of the endpoint device:

(5.3)

Prrxurrx + Brrrgpyx  if Uy < Threshold
Pwipi = '
Pyt *urrx + Burrpy  clse
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where Pyy;r; denotes the overall WiFi power usage, Pyr/Prr the high/low transmission
mode base power, urgx the utilization in packets per second, and Brr,,.y/BHT Ry the
beta coefficient for high/low power.
Based on the findings in |11] we can obtained the following power model for the NIC of
the edge device:
Pnic = Pup + Piown + Pidie (5.4)

where Pyrc denotes the overall NIC power usage, Pyp/ Piouwn the upload/download power
usage, and Pjg. the NIC idle power usage. Pyp/Piown can be modeled using the following
equation:

if r < Threshold
Pup,down _ {Bup,dowan *Uyp,down T S resno (55)

Bup,down g p * Uup,down  €lse
where Bup downy p/Bup,downyp are the power coefficients for low/high power upload/down-
load, and wyp down is the upload/download utilization in Mbps.
Last but not least we use the data presented in [35] to obtain a model for the NIC of the

cloud device:

PNIC = (uup + Udoum) * Ppacket + Pz'dle (56)

where Pyrc denotes the overall NIC power usage, yp/Udown the upload/download uti-
lization in packets per second, Ppycrer the power per packet and P, the NIC idle power

usage.

5.3.3 Camera

The camera power usage is dependent on the resolution and [FPS| with which the camera

is capturing images [29]. The following model is used in the prototype:

PCamera = /Bcamera * (Tesw * TESH * fpS) + Pidle (57)

where Pogmerq denotes the overall camera power usage, SBeamera 18 the power coefficient for
the camera, res, /resy is the height /width of the image in pixels, fps are the frames per
second, and P, is the idle power usage.

In this section, we selected power models for various devices, focusing on CPU, network,
and camera power usage. For CPUs, we derived models for endpoint and edge devices,
excluding cloud devices that will be measured with Intel RAPL. Network and camera
power models were also established based on utilization metrics and power coefficients.
Next, we will discuss how Intel RAPL measurements are utilized for power assessment in

cloud devices.
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5.4 Implementing Intel RAPL Measurements

Intel RAPL offers several methods for measuring the energy consumption of a system,
including the use of [MSR] and a sysfs interface known as powercap. In our implementation,
we utilize the sysfs interface due to its accessibility and ease of integration.

Intel RAPL provides detailed energy consumption data for each CPU socket within a
system, organized into distinct zones. Additionally, for each socket sub-zones are available
to report energy usage of other parts, such as memory consumption. The sysfs interface

" which serves as a continuously increasing counter that

includes a file named "energy uj,
reports the energy usage of a CPU or socket. This file records energy consumption in
micro-joules (pJ).

In our specific setup, only the total package power is reported by Intel RAPL. How-
ever, newer CPU versions support more granular measurement domains, such as per-core
measurements. By regularly reading the "energy uj" file, we can determine the energy
consumption over time. Since 1 joule (J) equals 1 watt-second (Ws), measuring the energy
consumption every second allows us to obtain power values.

To achieve finer granularity in our measurements, we estimate the per-application power
usage by examining the ratio between the overall CPU usage and the CPU usage of our

specific application. This ratio is then used to calculate the relative power consumption of

our application, providing us with detailed insights into its energy efficiency.

5.5 Limitations & Future Work

Virtualization of Devices Due to unavailability of hardware the devices used in the

experiments with the prototype have to be virtualized. The continuum framework [63]

is used to create the [virtual machines (VMs)| representing the actual devices. We are

using QEMU’s time share feature to limit the available processor resources to match the
hardware listed in Table[5.1] Furthermore, the usage of the camera is completely simulated
and reports as active as long as the publisher-process of the image-classification benchmark

is running on the endpoint node.

Extend Prototype for More Components Currently the scope of the protoype is
narrowly fixed to the devices we outline at the start of this chapter. However, like we
discussed before the compute continuum consists of a large variation of devices and com-
ponents. This variation provides a perfect basis for future work on this prototype by

extending its current implementation with power models for new devices.
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Furthermore, there are still missing components (e.g., memory, disk, fans, ACs) that
would need to be covered for the prototype to provide a real end-to-end image of the
workflow. We omitted these components due to missing data (fans) or lack of good power
models in the literature (memory, disk). However, we already provide a example imple-
mentation that is able to measure the power consumption of memory on platforms with

Intel RAPL support.

Extend Prototype to Support HW-Based Measurements Currently the prototype
does not contain any interfacing capabilities with regards to external, HW-based measure-
ment equipment due to our lack of such equipment. However, considering the modular
design of the prototype it should be trivial to implement a Energylnput subclass that is

able to interface with HW-based measurement equipment.

Extend Prototype to Support More SW-Based Interfaces Currently our proto-
type only supports Intel RAPL for power measurement data. However, similar interfaces
exist for hardware from Nvidia and AMD. Due to a lack of hardware form those vendors

we are unable to include these interfaces in our prototype.
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Evaluation

After answering [RQ-4] in the previous section by providing a prototype implementation it
is important to validate this implementation. We evaluate the end-to-end power model
with other software tools. The first part that we evaluate is our implementation of the
Intel RAPL measurements. There are other tools that utilize Intel RAPL for power /energy
measurements. We evaluate our implementations against this other tools to validate if the
measurements are reported correctly. Secondly, we also evaluate how many of the design
requirements we identified in Chapter [4] are implemented.

However, due to a lack of hardware (Section and hardware-based measurement

infrastructure we leave [{W-based] verification to future work.

6.1 Experiment Design & Setup

In order to evaluate our prototype we need a workflow for the compute continuum to use
as an experiment. We decide to use the image-classification experiment that is included in

the continuum framework [63].

6.1.1 Design

Figure [6.1] is a diagram describing this experiment. The image-classification experiment

consists of three main components: publisher, subscriber, and broker.
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Figure 6.1: Experiment Design

e Publisher: MQTT client that sends images to the broker

e Subscriber: MQTT client that receives and classifies images from the publisher using

a TensorFlow model

e Broker: MQTT broker that acts as the relay between the publisher and subscriber.

In our case, the publisher is considered to be a smartphone that captures the images
which are then sent to the subscriber. The subscriber can either be a Raspberry Pi serving
as an edge server or a cloud-grade server.

The implications of this setup are significant for understanding the power consumption
across the compute continuum. By using a smartphone as the publisher, we can explore
the impact of mobile device power usage in data acquisition. The comparison between the
Raspberry Pi and cloud server as subscribers allows us to assess how shifting computational

tasks from the cloud to the edge affects overall power consumption and performance.

6.1.2 Setup

As mentioned in Section [5.5] we are using instead of real devices for the endpoint and
edge. These VMs are deployed by the continuum framework including the necessary files
to run the experiment. However, the cloud server is a bare-metal server, so we are able to
test our Intel RAPL measurement implementation.

The experiment is executed with different configurations for the endpoint and edge/cloud
devices. For the endpoint device the configuration of the experiment is changed to generate

5 [frames per second (FPS)| and 30 We change the configuration to validate that
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Figure 6.2: Power usage between experiment runs with 30fps and 5fps.

our model is reacting to changes of the components or their utilization. Both of these

experiment runs are then repeated for a deployment using a edge and a cloud subscriber.

6.2 Experiment Results

Figure [6.2] presents the results of the different experiment executions in terms of power

while Figure is a comparison of the amount of energy used by the different executions.
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6.2.1 Cloud

To obtain the results for the cloud node (Figure and Figure we use Intel RAPL
for CPU and memory and the Equation for the NIC. We observe that there is almost
no increase in NIC power between 30FPS| and 5FPS executions due to the low utilization
of the network link. Contrary to this, the CPU power use increases significantly due to
the much higher amount of work it has to do. This increase is also clearly observed in the
energy comparison in Figure [6.3] where the cloud is using roughly double the energy when
comparing the 5FPS and 30FPS execution. This increase between the two executions is
expected due to the 3x higher CPU utilization (Figure & Figure which results
form the much higher processing required for 30FPS compared to 5FPS.

6.2.2 Edge

The results for the edge node (Figure and Figure are obtained using the Equa-
tion for the CPU and Equation & Equation for the NIC. Contrary to
the cloud, there are no significant increases in power use to be observed between the two
different executions. This is due to the already maxed out utilization of the CPU on the
5FPS execution. However, the important observation we have here is that the 30FPS ex-
ecution takes significantly longer (2.5x execution time) than the 5FPS execution. While
there is no increase in power visible Figure clearly shows that the energy consumption
has increase by 2.5 times. This is exactly according to our expectation after observing the

2.5 times longer execution time with the same amount of power usage.

6.2.3 Endpoint

For the endpoint (Figure and Figure three different models are employed: CPU
(Equation (5.1))), WiFi (Equation (5.3)), Camera (Equation (5.7)). While the WiFi and
CPU power usage increase slightly the most prominent observation is the roughly 3x hike
in camera power usage. This leads to a doubling in energy consumption (Figure for
which the camera is almost solely responsible.

Finally, Figure allows one further conclusion namely that there is a clear trade-off
between computational power and electrical power. Apart from looking at the results
of our experimental results there is one component in our prototype that allows further

validation, namely our Intel RAPL implementation.
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Figure 6.4: Comparison of Kepler and Scaphandre

6.3 Evaluating Intel RAPL

Before we can evaluate our own Intel RAPL implementation we first need to identify the
tools we want to evaluate it against. After identifying these tools we can evalute that our

own Intel RAPL implementation provides accurate and trustworthy results.

6.3.1 Evaluation of Other Intel RAPL tools

From a comprehensive literature review conducted prior to this thesis I@I, we have identified
two software-based power meters, Scaphandre and Kepler, as the state-of-the-art tools for
CPU energy measurements. To establish a validation baseline for assessing our own Intel
RAPL measurement implementation, it is essential to compare our implementation with
other state-of-the-art tools.

We evaluate these software-based power meters, which are both using the RAPL tech-
nology, in a bare-metal Kubernetes environment. The Kubernetes environment is used
because Kepler is a acronym for "Kubernetes-based Efficient Power Level Exporter" and

therefore it is limited to measure energy in such an environment.
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Both applications measure a micro-benchmark that involves a simple Fibonacci sequence
computation (Listing 1)) five times, adhering to the same experimental setup. They utilize
the sysfs energy uj metric from the powercap framework for collecting data. During a
one-minute test period, each benchmark consistently utilizes approximately 100% CPU
power on a single core.

The evaluation reveals that Scaphandre produces more consistent results, maintaining
stable energy usage readings throughout the testing period. In contrast, Kepler displays
significant fluctuations and a broader range of deviations in its measurements (Figure.
Additionally, the energy consumption reported by Kepler exceeds that of Scaphandre by
more than 1.5 times (Figure . Despite employing the same methodological approach,
the reasons for Kepler’s substantial inconsistencies and higher reported energy usage remain

unexplained.

6.3.2 Evaluation of Our Intel RAPL Implementation

Based on the finding of the previous Section [6.3.1] we select Scaphandre to evaluate our
Intel RAPL power measurement implementation against. Furthermore, we also use perf
because it is a well-known tool included in the Linux kernel.

Figure shows the power usage of the tools over one run of the image-classification
experiment. Even though all tools use the Intel RAPL sysfs interface exposed by powercap
the results differ. The root mean square error (RMSE) between our custom implementation
and perf is 5.59 while the RMSE between our implementation and Scaphandre is 3.75.

Even after careful reviewing of the Scaphandre source code it remains unclear to us why
the results of Scaphandre and our own implementation would differ so much. The only
possible explanation we could come up with is that Scaphandre is probing the Intel RAPL
sysfs interface every three seconds and calculates the power values it reports from these
measurements. Contrary to this our implementation probes the interface every second.
In this scenario a timing difference between measurements of 10% or 0.1 seconds would

already amount to a difference of roughly 5W.

6.4 Prototype Compliance with Design Requirements

In this section, we evaluate the compliance of our prototype with the requirements in
Chapter [4f We assess each requirement based on how the prototype addresses the stated
criteria. For a comprehensive overview of how each requirement corresponds to specific

parts of the design, we refer to Figure once more.
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Figure 6.6: Overview of the model and the respective design requirements.

Adaptability ( DR-1) Our prototype meets this requirement by being successfully de-
ployed in endpoint, edge and cloud environments. Due to the modular approach, employing
subclasses of one abstract base class (Energylnput, as discussed in Section, we are able
to implement power models for different components. For each deployment we can then
select the fitting power models to ensure proper estimations for the given deployment. This
flexibility highlights the prototype’s ability to function in various scenarios, achieving the
goal of adaptable deployment.

We can see the adaptability of the prototype evidenced in Figure The graphs show

that our prototype measures different components based on the deployment.

Stability ( DR-2) Although we supply particular initial values for the models imple-

mented in our prototype, these values are customized for the specific models and compo-
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nents used during testing. To provide these initial values we again make use of the benefits
of having a abstract base class that can be implemented in subclasses that provide specific
initial values as constructor parameters. However, this customization indicates that dis-
tinct models and components will require unique initial values, making it challenging to

meet this requirement in a more generalized way.

Accuracy (DR-3) The prototype relies on direct measurements whenever possible
and opts for model-based estimations in other cases. Because hardware-based measure-
ment tools were unavailable during the development of the prototype, they are excluded.
Alternatively, we use software-based interfaces (i.e., Intel RAPL) for cloud deployments on

bare metal when these interfaces are available.

Power Measurement Capability ( DR-4) As per this requirement, the model is
required to measure power. Our prototype derives power values from Intel RAPL, which
reports in microjoules. This is possible because 1 Joule is equal to 1 W*s. Therefore, we can
derive the power usage from the energy usage if we have time between measurements. All
other models included in the prototype provide power values in watts, ensuring adherence

to this requirement.

Timing ( DR-5) The prototype takes measurements every second and records a times-
tamp for each. This method allows for precise energy usage calculations, thus meeting the
requirement. We can clearly see this measurement resolution in Figure where the

NIC utilization fluctuates frequently.

Context Awareness ( DR-6 ) Currently, the prototype requires manual declaration of
the components and their measurement parameters. It does not automatically collect these
details on the basis of system specifications. This shows that the requirement is partially

met and that there is potential for improving automatic context-awareness.

Real-Time Monitoring ( DR-7) The prototype meets this requirement by including
a console output feature that reports measured power values in real time. This real-time
reporting capability ensures that monitoring data is available instantly, thereby meeting

the requirement.
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6.5 Limitations & Future Work

HW-Based Evaluation By measuring the power or energy used by the different compo-
nents in the system with HW-based measurement interface (e.g., WattProf|24]) we would
be able to evaluate the end-to-end model properly. Even though SW-based measurement
interfaces are provided by (some) vendors our results (Figure and Figure show that
they are trivial to use and can lead to varying results. The comparison of Scaphandre and
Kepler (Section as well as the comparison of our RAPL implementation compared
to Scaphandre and perf (Section clearly indicates a need for external validation of

these tools.

Compliance with Design Requirements In summary, our prototype exhibits sub-
stantial compliance with the majority of requirements, demonstrating adaptability (DR-
1), specific measurement techniques (DR-3), accurate power measurement (DR-4), fixed
interval measurements (DR-5), and real-time data reporting (DR-7). However, there are
areas, such as generalizing initial values (DR-2) and improving context awareness (DR-6),

where further development could enhance compliance.
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Conclusion

This thesis presents a comprehensive study into the energy consumption of devices within
the compute continuum, addressing a critical and socially relevant issue in the context of
advancing global efforts to mitigate climate change and reduce the environmental foot-
print of digital technologies. The research has been driven by four key research questions,
each contributing to the development and validation of an end-to-end power model that

encompasses endpoint, edge, and cloud devices.

7.1 Contributions

What are the primary energy consuming components in the compute
continuum? By answering RQ-1 we now know what we components of the devices in the
compute continuum we have to measure. We systematically identify and classify compo-
nents responsible for power consumption across different layers of the compute continuum.
Therefore, this thesis provides a foundational understanding necessary for developing ac-
curate power models. The analysis highlighted the significant energy impact of various
components, such as CPUs, GPUs, and communication modules, in endpoint, edge, and

cloud devices.

How can the power use of these components be accurately measured
or modeled? The research introduced robust methodologies for measuring and mod-
eling the power consumption of identified components. Leveraging quantitative research
methods and extensive surveys, the study formulated theoretical model structures and
configurations that reflect real-world power consumption patterns. This approach ensures

the adaptability and scalability of the models to accommodate new data and insights.
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How can a end-to-end power model for devices in the compute contin-
uum be designed? A comprehensive power model was designed, integrating insights
from the identification and measurement phases. This model simplifies the complexity of
various devices and components within the compute continuum, providing a manageable
framework for implementing and comparing different power models. The design phase also
evaluated the support for hardware-based energy measurement, enhancing the model’s

accuracy and reliability.

How can we prototype this model to estimate the power consumption in
the compute continuum? A prototype tool was developed to estimate power consump-
tion across different deployment configurations within the compute continuum. The pro-
totype’s implementation demonstrated the conceptual feasibility of the end-to-end power
model, undergoing rigorous testing against workload-level benchmarks. The open-source
nature of the tool promotes community contributions, fostering continuous innovation and

enhancement in energy-efficient computing.

7.2 Future Directions

The findings and contributions of this thesis pave the way for several avenues of future

research. Key directions include:

Expanding the Prototype Future work can focus on expanding the prototype to cover
a broader range of configurations and devices within the compute continuum. Enhancing
the tool’s capabilities to provide more granular power consumption estimates will further

its applicability and utility in real-world scenarios.

Integration with Emerging Technologies As new technologies such as advanced IoT
devices, Al, and big data analytics continue to evolve, integrating these advancements
into the power model will be essential. Continuous updating and validation of the model
will ensure its relevance and accuracy in measuring the energy impact of cutting-edge

technologies.

Policy and Societal Impact The research highlights the societal relevance of energy-
efficient computing. Future studies could explore the policy implications of the findings,
providing recommendations for regulatory frameworks (e.g., EU Energy Efficiency Direc-

tive [64]) and industry standards that promote sustainable practices in the tech industry.
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7.2 Future Directions

In conclusion, this thesis has made significant strides in understanding and modeling
energy consumption within the compute continuum. By providing a robust framework and
practical tools, it contributes to the ongoing efforts to achieve energy-efficient computing,
aligning with global sustainability goals and societal priorities. The open-science approach
adopted in this research ensures that the contributions will continue to evolve, driving

further innovation and development in the field of energy-efficient technology.

55



7. CONCLUSION

o6



References

1]

2]

3]

[4]

[5]

(6]

A. Andrae and T. Edler, “On global electricity usage of communication technology:
Trends to 2030,” Challenges, vol. 6, no. 1, pp. 117-157, Apr. 30, 2015, 1SSN: 2078-1547.
DOI: [10.3390/challe6010117. [Online|. Available: http://www.mdpi. com/2078-
1547/6/1/117 ([} [).

M. Jansen, A. Al-Dulaimy, A. V. Papadopoulos, A. Trivedi, and A. Iosup, The SPEC-
RG reference architecture for the compute continuum, Mar. 2, 2023. arXiv: 2207 .
04159 [cs]. |Online|. Available: http://arxiv. org/abs/2207 .04159 (visited on
01/22/2024) ( B [ 15 ).

A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey
and benchmarking of machine learning accelerators,” in 2019 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), Waltham, MA, USA: IEEE, Sep.
2019, pp. 1-9, 1SBN: 978-1-72815-020-8. DOI: [10. 1109 /HPEC . 2019 . 8916327. [On-
line]. Available: https://ieeexplore. ieee.org/document/8916327/ (visited on

06/06,/2024) (3} [19] [0}, 22).

A. Cabrera, F. Almeida, J. Arteaga, and V. Blanco, “Measuring energy consumption

7

using EML (energy measurement library),” en, Computer Science - Research and
Development, vol. 30, no. 2, pp. 135-143, May 2015, 1SSN: 1865-2034, 1865-2042.
DOI: 10.1007/s00450-014-0269-5. [Online|. Available: http://link.springer.

com/10.1007/s00450-014-0269-5| (visited on 11/22/2023) ( [4)).

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL: Memory
power estimation and capping,” en, in Proceedings of the 16th ACM/IEEE interna-
tional symposium on Low power electronics and design, Austin Texas USA: ACM,
Aug. 2010, pp. 189-194, 1SBN: 978-1-4503-0146-6. DOI: [10. 1145/1840845 . 1840883
[Online|. Available: https://dl.acm.org/doi/10.1145/1840845. 1840883 (visited
on 11/23/2023) ([ [11]} B0).

D. Freina, M. Jansen, and A. Trivedi, A survey of energy measurement methodologies

for computer systems, Feb. 2024 ( .

o7


https://doi.org/10.3390/challe6010117
http://www.mdpi.com/2078-1547/6/1/117
http://www.mdpi.com/2078-1547/6/1/117
https://arxiv.org/abs/2207.04159 [cs]
https://arxiv.org/abs/2207.04159 [cs]
http://arxiv.org/abs/2207.04159
https://doi.org/10.1109/HPEC.2019.8916327
https://ieeexplore.ieee.org/document/8916327/
https://doi.org/10.1007/s00450-014-0269-5
http://link.springer.com/10.1007/s00450-014-0269-5
http://link.springer.com/10.1007/s00450-014-0269-5
https://doi.org/10.1145/1840845.1840883
https://dl.acm.org/doi/10.1145/1840845.1840883

REFERENCES

7]

18]

19]

[10]

[11]

[12]

[13]

C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Method-
ology and empirical data,” in 22nd Digital Avionics Systems Conference. Proceedings

(Cat. No.03CHS37449), San Diego, CA, USA: IEEE Comput. Soc, 2003, pp. 93-104,

ISBN: 978-0-7695-2043-8. DOI: 10.1109/MICRO. 2003 . 1253186. [Online|. Available:

http://ieeexplore.ieee.org/document/1253186/ (visited on 11,/23/2023) ([).

Xizhou Feng, Rong Ge, and K. Cameron, “Power and energy profiling of scientific
applications on distributed systems,” in 19th IEEFE International Parallel and Dis-
tributed Processing Symposium, Denver, CO, USA: IEEE, 2005, pp. 34-34, ISBN:
978-0-7695-2312-5. DOI: 10.1109/IPDPS. 2005 . 346. [Online|. Available: http://
ieeexplore.ieee.org/document/1419856/| (visited on 12/18/2023) ([4)).

L. Zhang, B. Tiwana, Z. Qian, et al., “Accurate online power estimation and au-
tomatic battery behavior based power model generation for smartphones,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/soft-
ware codesign and system synthesis, Scottsdale Arizona USA: ACM, Oct. 24, 2010,
pp. 105-114, 1SBN: 978-1-60558-905-3. DOI: 10 .1145/1878961 . 1878982. |Ounline|.
Available: https://dl.acm.org/doi/10.1145/1878961 . 1878982 (visited on

06,/04,/2024) ([4 22).
F. Kaup, P. Gottschling, and D. Hausheer, “PowerPi: Measuring and modeling the

power consumption of the raspberry pi,” in 39th Annual IEEE Conference on Local
Computer Networks, Edmonton, AB: IEEE, Sep. 2014, pp. 236-243, 1SBN: 978-1-4799-
3780-6. DOI: |10.1109/LCN.2014.6925777. [Online|. Available: http://ieeexplore.

ieee.org/document/6925777/ (visited on 06/11/2024) ( 38).

L. Ardito and M. Torchiano, “Creating and evaluating a software power model for
linux single board computers,” in Proceedings of the 6th International Workshop on
Green and Sustainable Software, Gothenburg Sweden: ACM, May 27, 2018, pp. 1-
8, ISBN: 978-1-4503-5732-6. DOIL: 10 . 1145/3194078 . 3194079. [Online|. Available:

https://dl.acm.org/doi/10.1145/3194078.3194079 (visited on 06/14,/2024) ([4]
&)

Y. Levy and T. J. Ellis, “A systems approach to conduct an effective literature
review in support of information systems research,” Informing Science: The Inter-
national Journal of an Emerging Transdiscipline, vol. 9, pp. 181-212, 2006, ISSN:
1547-9684, 1521-4672. DOL: |10 . 28945 / 479. |[Online|. Available: https : / / www .
informingscience.org/Publications/479 (visited on 04/22/2024) ([g).

N. A. Kheir, Ed., Systems modeling and computer simulation, 2nd ed, Electrical
engineering and electronics 94, New York: M. Dekker, 1996, 729 pp., 1SBN: 978-0-
8247-9421-7 ([3).

o8


https://doi.org/10.1109/MICRO.2003.1253186
http://ieeexplore.ieee.org/document/1253186/
https://doi.org/10.1109/IPDPS.2005.346
http://ieeexplore.ieee.org/document/1419856/
http://ieeexplore.ieee.org/document/1419856/
https://doi.org/10.1145/1878961.1878982
https://dl.acm.org/doi/10.1145/1878961.1878982
https://doi.org/10.1109/LCN.2014.6925777
http://ieeexplore.ieee.org/document/6925777/
http://ieeexplore.ieee.org/document/6925777/
https://doi.org/10.1145/3194078.3194079
https://dl.acm.org/doi/10.1145/3194078.3194079
https://doi.org/10.28945/479
https://www.informingscience.org/Publications/479
https://www.informingscience.org/Publications/479

REFERENCES

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Tosup, L. Versluis, A. Trivedi, et al., “The AtLarge vision on the design of dis-
tributed systems and ecosystems,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), Dallas, TX, USA: IEEE, Jul. 2019, pp. 1765—
1776, 1SBN: 978-1-72812-519-0. DOI: 10.1109/ICDCS.2019.00175. [Online|. Avail-
able: https://ieeexplore.ieee.org/document/8885212/ (visited on 04/22/2024)

(B.

R. W. Hamming, The art of doing science and engineering: learning to learn, Fourth
edition. San Francisco: Stripe Press, 2020, 403 pp., ISBN: 978-1-73226-517-2 ([§).

K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A design science
research methodology for information systems research,” Journal of Management
Information Systems, vol. 24, no. 3, pp. 45-77, Dec. 1, 2007, 1SSN: 0742-1222. DOI:
10.2753/MIS0742- 1222240302, |Online|. Available: https://doi.org/10.2753/
MIS0742-1222240302 (visited on 04/22/2024) ().

R. Jain, The art of computer systems performance analysis: techniques for experimen-
tal design, measurement, simulation, and modeling. New York: Wiley, 1991, 685 pp.,
ISBN: 978-0-471-50336-1 ([g).

J. Ousterhout, “Always measure one level deeper,” Communications of the ACM,
vol. 61, no. 7, pp. 74-83, Jun. 25, 2018, 1SsN: 0001-0782, 1557-7317. DOI: |10.1145/
3213770. [Online|. Available: https://dl.acm.org/doi/10.1145/3213770 (visited

on 04/22/2024) ().

S. Bezjak, A. Clyburne-Sherin, P. Conzett, et al., Open Science Training Handbook.
[object Object], Apr. 4, 2018. DOI: [10 . 5281/ZENODO . 1212496. [Online|. Available:
https://zenodo.org/record/1212496 (visited on 04/22/2024) ([§).

M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The FAIR guiding princi-
ples for scientific data management and stewardship,” Scientific Data, vol. 3, no. 1,
p. 160018, Mar. 15, 2016, 1SSN: 2052-4463. DOI: 10 .1038/sdata . 2016 . 18. [On-
line|. Available: https ://www.nature . com/articles/sdata201618 (visited on
04/22/2024) ().

E. D. Berger, S. M. Blackburn, M. Hauswirth, M. W. H. o. Aug 28, and 2019. “A
checklist manifesto for empirical evaluation: A preemptive strike against a replica-
tion crisis in computer science,” SIGPLAN Blog. (Aug. 28, 2019), [Online|. Avail-
able: https://blog . sigplan . org/2019/08/28/a- checklist - manifesto -
for-empirical-evaluation-a-preemptive-strike-against-a-replication-
crisis-in-computer-science/| (visited on 04/22/2024) ([3).

59


https://doi.org/10.1109/ICDCS.2019.00175
https://ieeexplore.ieee.org/document/8885212/
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1145/3213770
https://doi.org/10.1145/3213770
https://dl.acm.org/doi/10.1145/3213770
https://doi.org/10.5281/ZENODO.1212496
https://zenodo.org/record/1212496
https://doi.org/10.1038/sdata.2016.18
https://www.nature.com/articles/sdata201618
https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/
https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/
https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/

REFERENCES

[22]

23]

[24]

[25]

[26]

[27]

28]

A. Uta, A. Custura, D. Duplyakin, et al., “Is big data performance reproducible
in modern cloud networks?” In Proceedings of the 17th Usenix Conference on Net-
worked Systems Design and Implementation, ser. NSDI’20, USA: USENIX Associa-
tion, Feb. 25, 2020, pp. 513-528, 1SBN: 978-1-939133-13-7. (visited on 04/22/2024)

(B)-

D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “PowerMon: Fine-grained
and integrated power monitoring for commodity computer systems,”
of the IEEE SoutheastCon 2010 (SoutheastCon), Concord, NC, USA: IEEE, Mar.
2010, pp. 479-484, 1SBN: 978-1-4244-5854-7. DOI: [10.1109/SECON . 2010 . 5453824,

[Online]. Available: http://ieeexplore.ieee.org/document/5453824/ (visited on
11/21,/2023) ([T} 0 1, BO).

M. Rashti, G. Sabin, D. Vansickle, and B. Norris, “WattProf: A flexible platform
for fine-grained HPC power profiling,” in 2015 IEEE International Conference on
Cluster Computing, Chicago, IL, USA: IEEE, Sep. 2015, pp. 698705, 1SBN: 978-
1-4673-6598-7. DOI: |10 . 1109 /CLUSTER . 2015 . 121 |Online|. Available: https: //
ieeexplore.ieee.org/document/7307670 (visited on 11,/22/2023) (
51).

AMD, “BIOS and kernel developer’s guide (BKDG) for AMD family 15h models
00h-0fh processors,” 2013 ([L1)).

D. Hackenberg, T. Ilsche, R. Schone, D. Molka, M. Schmidt, and W. E. Nagel, “Power

measurement techniques on standard compute nodes: A quantitative comparison,”

in Proceedings

en, in 2013 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), Austin, TX, USA: IEEE, Apr. 2013, pp. 194-204. por: 10.
1109/ISPASS.2013.6557170. [Online|. Available: http://ieeexplore.ieee.org/
document/6557170/ (visited on 11/23/2023) ( [30).

W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “DevScope: A nonintrusive and

”in Proceedings of

online power analysis tool for smartphone hardware components,
the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, Tampere Finland: ACM, Oct. 7, 2012, pp. 353-362, ISBN:
978-1-4503-1426-8. DOI: 10 . 1145 /2380445 . 2380502. [Online|. Available: https :

//dl.acm.org/doi/10.1145/2380445 .2380502 (visited on 06/05,/2024) (
71).

C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope: Application en-
ergy metering framework for android smartphones using kernel activity monitoring,”
in Proceedings of the 2012 USENIX conference on Annual Technical Conference,
ser. USENIX ATC’12, USA: USENIX Association, Jun. 13, 2012, p. 36. (visited on

07/14/2024) ([12] 22).

60


https://doi.org/10.1109/SECON.2010.5453824
http://ieeexplore.ieee.org/document/5453824/
https://doi.org/10.1109/CLUSTER.2015.121
https://ieeexplore.ieee.org/document/7307670
https://ieeexplore.ieee.org/document/7307670
https://doi.org/10.1109/ISPASS.2013.6557170
https://doi.org/10.1109/ISPASS.2013.6557170
http://ieeexplore.ieee.org/document/6557170/
http://ieeexplore.ieee.org/document/6557170/
https://doi.org/10.1145/2380445.2380502
https://dl.acm.org/doi/10.1145/2380445.2380502
https://dl.acm.org/doi/10.1145/2380445.2380502

REFERENCES

[29]

[30]

[31]

[32]

[33]

[34]

[35]

C. Yoon, S. Lee, Y. Choi, R. Ha, and H. Cha, “Accurate power modeling of modern
mobile application processors,” Journal of Systems Architecture, vol. 81, pp. 17-31,
Nov. 1, 2017, 1SSN: 1383-7621. DOI1: 10.1016/j .sysarc.2017.10.001. [Online|. Avail-
able:https://www.sciencedirect.com/science/article/pii/S1383762117301947

(visited on 06/05/2024) ([12] [18] 39).

N. Mammeri, M. Neu, S. Lal, and B. Juurlink, “Performance counters based power
modeling of mobile GPUs using deep learning,” in 2019 International Conference
on High Performance Computing € Simulation (HPCS), Dublin, Ireland: IEEE,
Jul. 2019, pp. 193-200, 1SBN: 978-1-72814-484-9. DOI: [10.1109/HPCS48598 . 2019 .
9188139. |Online|. Available: https://ieeexplore.ieee.org/document/9188139/
(visited on 06/06,/2024) ([12] [18).

F. Kaup, S. Hacker, E. Mentzendorff, C. Meurisch, and D. Hausheer, “The progress
of the energy-efficiency of single-board computers,” Tech. Rep. NetSys-TR-2018-

01, 2018. |Ounline|. Available: https : //www . netsys . ovgu . de / netsys _media /
publications/NetSys_TR_2018_01-p-58.pdf| (visited on 06/11/2024) ([12]
5.

K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “RAPL in action:
Experiences in using RAPL for power measurements,” ACM Transactions on Mod-
eling and Performance FEvaluation of Computing Systems, vol. 3, no. 2, pp. 1-26,
Jun. 30, 2018, 1SSN: 2376-3639, 2376-3647. DOI: 10.1145/3177754. [Online|. Avail-
able: https://dl.acm.org/doi/10.1145/3177754 (visited on 06/17/2024) ( [12]).

S. Desrochers, C. Paradis, and V. M. Weaver, “A validation of DRAM RAPL power
measurements,” in Proceedings of the Second International Symposium on Memory
Systems, Alexandria VA USA: ACM, Oct. 3, 2016, pp. 455-470, 1SBN: 978-1-4503-
4305-3. DOI: 10.1145/2989081.2989088. |Online|. Available: https://dl.acm.org/
doi/10.1145/2989081.2989088 (visited on 01/25/2024) ([12] 23).

L. Alt, A. Kozhokanova, T. Ilsche, C. Terboven, and M. S. Mueller, “An experimen-
tal setup to evaluate RAPL energy counters for heterogeneous memory,” in Proceed-
ings of the 15th ACM/SPEC International Conference on Performance Engineering,
London United Kingdom: ACM, May 7, 2024, pp. 71-82, 1SBN: 9798400704444. DOI:
10.1145/3629526 . 3645052, |Online|. Available: https://dl.acm.org/doi/10.
1145/3629526 . 3645052 (visited on 06,/20,/2024) ( [[2).

P. Reviriego, K. Christensen, J. Rabanillo, and J. A. Maestro, “An initial evalu-
ation of energy efficient ethernet,” IEEE Communications Letters, vol. 15, no. 5,
pp- 578-580, May 2011, Conference Name: IEEE Communications Letters, ISSN:
1558-2558. DOI: [10.1109/LCOMM. 2011.040111.102259. [Online|. Available: https:

61


https://doi.org/10.1016/j.sysarc.2017.10.001
https://www.sciencedirect.com/science/article/pii/S1383762117301947
https://doi.org/10.1109/HPCS48598.2019.9188139
https://doi.org/10.1109/HPCS48598.2019.9188139
https://ieeexplore.ieee.org/document/9188139/
https://www.netsys.ovgu.de/netsys_media/publications/NetSys_TR_2018_01-p-58.pdf
https://www.netsys.ovgu.de/netsys_media/publications/NetSys_TR_2018_01-p-58.pdf
https://doi.org/10.1145/3177754
https://dl.acm.org/doi/10.1145/3177754
https://doi.org/10.1145/2989081.2989088
https://dl.acm.org/doi/10.1145/2989081.2989088
https://dl.acm.org/doi/10.1145/2989081.2989088
https://doi.org/10.1145/3629526.3645052
https://dl.acm.org/doi/10.1145/3629526.3645052
https://dl.acm.org/doi/10.1145/3629526.3645052
https://doi.org/10.1109/LCOMM.2011.040111.102259
https://ieeexplore.ieee.org/abstract/document/5743052/authors#authors
https://ieeexplore.ieee.org/abstract/document/5743052/authors#authors
https://ieeexplore.ieee.org/abstract/document/5743052/authors#authors

REFERENCES

[36]

[37]

[38]

[39]

[40]

[41]

//ieeexplore.ieee.org/abstract/document/5743052/authors#authors| (visited
on 06/04,/2024) ([13] 23] [38] [39).

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. Maestro,
“IEEE 802.3az: The road to energy efficient ethernet,” IEEE Communications Maga-
zine, vol. 48, no. 11, pp. 50-56, Nov. 2010, 18SN: 0163-6804. DOI:/10.1109/MCOM. 2010.
5621967. |Online|. Available: http://ieeexplore. ieee.org/document/5621967/
(visited on 06/04/2024) ([L3).

R. Arshad, S. Zahoor, M. A. Shah, A. Wahid, and H. Yu, “Green IoT: An investiga-
tion on energy saving practices for 2020 and beyond,” IEEE Access, vol. 5, pp. 15667—
15681, 2017, 1SSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2686092. [Online|. Avail-
able: http://ieeexplore.ieee.org/document/7997698/ (visited on 05/13/2024)
( 22).

M. B. Kjeergaard, J. Langdal, T. Godsk, and T. Toftkjeer, “EnTracked: Energy-
efficient robust position tracking for mobile devices,” in Proceedings of the 7th inter-
national conference on Mobile systems, applications, and services, Krakéw Poland:
ACM, Jun. 22, 2009, pp. 221-234, 1SBN: 978-1-60558-566-6. DOI: [10.1145/1555816.
1555839. [Online|. Available: https://dl.acm.org/doi/10.1145/1555816.1555839
(visited on 06/05/2024) ([L8).

L.-M. F. Burciu, R.-P. Fotescu, R. Constantinescu, B. Alexandrescu, and P. Svasta,
“Energy consumption analysis of a network of sensors and energy consumption op-
timization methods,” in 2023 IEEE 29th International Symposium for Design and
Technology in Electronic Packaging (SIITME), ISSN: 2642-7036, Oct. 2023, pp. 219—
222, DOI: |10 . 1109/ SIITME59799 . 2023 . 10431388, [Online|. Available: https : //
ieeexplore - ieee-org.vu-nl. idm. oclc. org/abstract/document /10431388

(visited on 06/05/2024) ([18).
J. L. Soler-Fernandez, O. Romera, A. Dieguez, J. D. Prades, and O. Alonso, “Ultra-

low power readout electronics for wireless gas sensors in IoT,” in 2023 30th IEEE
International Conference on Electronics, Circuits and Systems (ICECS), Dec. 2023,
pp. 1-4. DOI: 110.1109/ICECS58634 . 2023 . 10382924. [Online]. Available: https :
//ieeexplore-ieee-org.vu-nl.idm.oclc.org/document /10382924 (visited on
06,/05/2024) ([18].

A. Shye, B. Scholbrock, and G. Memik, “Into the wild: Studying real user activity
patterns to guide power optimizations for mobile architectures,” in Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, New
York New York: ACM, Dec. 12, 2009, pp. 168-178, 1SBN: 978-1-60558-798-1. DOTI:
10.1145/1669112. 1669135, |Online|. Available: https://dl.acm.org/doi/10.
1145/1669112.1669135 (visited on 06,/04/2024) ( [18] 22).

62


https://ieeexplore.ieee.org/abstract/document/5743052/authors#authors
https://ieeexplore.ieee.org/abstract/document/5743052/authors#authors
https://ieeexplore.ieee.org/abstract/document/5743052/authors#authors
https://ieeexplore.ieee.org/abstract/document/5743052/authors#authors
https://doi.org/10.1109/MCOM.2010.5621967
https://doi.org/10.1109/MCOM.2010.5621967
http://ieeexplore.ieee.org/document/5621967/
https://doi.org/10.1109/ACCESS.2017.2686092
http://ieeexplore.ieee.org/document/7997698/
https://doi.org/10.1145/1555816.1555839
https://doi.org/10.1145/1555816.1555839
https://dl.acm.org/doi/10.1145/1555816.1555839
https://doi.org/10.1109/SIITME59799.2023.10431388
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/10431388
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/10431388
https://doi.org/10.1109/ICECS58634.2023.10382924
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/document/10382924
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/document/10382924
https://doi.org/10.1145/1669112.1669135
https://dl.acm.org/doi/10.1145/1669112.1669135
https://dl.acm.org/doi/10.1145/1669112.1669135

REFERENCES

[42]

[43]

[44]

[45]

[46]

[47]

48]

N. Jinaporn and P. Saengudomlert, “Impact of gateway placement and energy con-
sumption for data processing on lifetime of IoT networks,” in 2021 18th Interna-
tional Conference on Electrical Engineering/FElectronics, Computer, Telecommuni-
cations and Information Technology (ECTI-CON), May 2021, pp. 90-93. DOI: 10.
1109/ECTI-CON51831.2021 . 9454894, [Online]. Available: https://ieeexplore-
ieee-org.vu-nl.idm.oclc.org/document /9454894 (visited on 06/05/2024) (

7).

B. Martinez, M. Mont6n, I. Vilajosana, and J. D. Prades, “The power of models:
Modeling power consumption for IoT devices,” IEEE Sensors Journal, vol. 15, no. 10,
pp- 5777-5789, Oct. 2015, Conference Name: IEEE Sensors Journal, 1SSN: 1558-1748.
DOI:/10.1109/JSEN.2015.2445094. [Online|. Available: https://ieeexplore-ieee-
org.vu-nl.idm.oclc.org/abstract/document /7122861 (visited on 06/05/2024)

(18 21).

W. A. Hanafy, T. Molom-Ochir, and R. Shenoy, “Design considerations for energy-
efficient inference on edge devices,” in Proceedings of the Twelfth ACM International
Conference on Future FEnergy Systems, Virtual Event Italy: ACM, Jun. 22, 2021,
pp. 302-308, 1SBN: 978-1-4503-8333-2. DOI: 10 .1145/3447555 . 3465326, |Online].
Available: https://dl.acm.org/doi/ 10 . 1145 /3447555 . 3465326 (visited on
05/13/2024) ( 23).

M. Daraghmeh, I. Al Ridhawi, M. Aloqaily, Y. Jararweh, and A. Agarwal, “A power
management approach to reduce energy consumption for edge computing servers,” in
2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC),
Rome, Italy: IEEE, Jun. 2019, pp. 259264, 1SBN: 978-1-72811-796-6. DOI: [10.1109/
FMEC.2019.8795328. |Online|. Available: https://ieeexplore.ieee.org/document,/
8795328/| (visited on 05/13/2024) ( [L8).

E. Ahmed and M. H. Rehmani, “Mobile edge computing: Opportunities, solutions,
and challenges,” Future Generation Computer Systems, vol. 70, pp. 59-63, May 2017,
1SSN: 0167739X. DOI: [10.1016/j . future.2016.09.015. [Online|. Available: https:
/ / linkinghub . elsevier . com/retrieve /pii/S0167739X16303260 (visited on

05/21/2024) ( [I8} [T9).

J. Liu and X. Liu, “Energy-efficient allocation for multiple tasks in mobile edge
computing,” Journal of Cloud Computing, vol. 11, no. 1, p. 71, Oct. 27, 2022, ISSN:
2192-113X. DOI: 10.1186/s13677 - 022 - 00342~ 1. [Online|. Available: https://
journalofcloudcomputing . springeropen.com/articles/10.1186/s13677-022-

00342-1/ (visited on 05/21,/2024) ([18] [19).
S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, and E. De Lara, “Cloudpath:
A multi-tier cloud computing framework,” in Proceedings of the Second ACM/IEEE

63


https://doi.org/10.1109/ECTI-CON51831.2021.9454894
https://doi.org/10.1109/ECTI-CON51831.2021.9454894
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/document/9454894
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/document/9454894
https://doi.org/10.1109/JSEN.2015.2445094
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/7122861
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/7122861
https://doi.org/10.1145/3447555.3465326
https://dl.acm.org/doi/10.1145/3447555.3465326
https://doi.org/10.1109/FMEC.2019.8795328
https://doi.org/10.1109/FMEC.2019.8795328
https://ieeexplore.ieee.org/document/8795328/
https://ieeexplore.ieee.org/document/8795328/
https://doi.org/10.1016/j.future.2016.09.015
https://linkinghub.elsevier.com/retrieve/pii/S0167739X16303260
https://linkinghub.elsevier.com/retrieve/pii/S0167739X16303260
https://doi.org/10.1186/s13677-022-00342-1
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-022-00342-1
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-022-00342-1
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-022-00342-1

REFERENCES

[49]

[50]

[51]

[52]

[53]

[54]

Symposium on Edge Computing, San Jose California: ACM, Oct. 12, 2017, pp. 1-
13, 1SBN: 978-1-4503-5087-7. DOI: 10.1145/3132211.3134464. [Online|. Available:
https://dl.acm.org/doi/10.1145/3132211.3134464 (visited on 06/11/2024)

(9.

K. Rungsuptaweekoon, V. Visoottiviseth, and R. Takano, “Evaluating the power
efficiency of deep learning inference on embedded GPU systems,” in 2017 2nd Inter-
national Conference on Information Technology (INCIT), Nov. 2017, pp. 1-5. DOI:
10.1109/INCIT. 2017 .8257866. |Online|. Available: https://ieeexplore.ieee.
org/document /8257866 (visited on 07/14,/2024) ([19} [22).

H. Halawa, H. A. Abdelhafez, A. Boktor, and M. Ripeanu, “NVIDIA jetson platform
characterization,” in Furo-Par 2017: Parallel Processing, F. F. Rivera, T. F. Pena,
and J. C. Cabaleiro, Eds., Cham: Springer International Publishing, 2017, pp. 92—
105, ISBN: 978-3-319-64203-1. DOI: 10.1007/978-3-319-64203-1_7 ( [19] [22).

H. A. Abdelhafez and M. Ripeanu, “Studying the impact of CPU and memory con-
troller frequencies on power consumption of the jetson TX1,” in 2019 Fourth Interna-
tional Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy: IEEE,
Jun. 2019, pp. 105-112, 1SBN: 978-1-72811-796-6. DOIL: 10 1109/FMEC. 2019 . 8795334.
[Online|. Available: https://ieeexplore.ieee.org/document/8795334/| (visited
on 06/11/2024) ([19).

C. Jiang, T. Fan, H. Gao, et al., “Energy aware edge computing: A survey,” Computer
Communications, vol. 151, pp. 556-580, Feb. 2020, 1ssN: 01403664. po1: [10.1016/
j.comcom.2020.01.004. [Online|. Available: https://linkinghub.elsevier.com/
retrieve/pii/S014036641930831X| (visited on 05,/21,/2024) ( [19).

X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized
computer,” in Proceedings of the 34th annual international symposium on Computer
architecture, ser. ISCA 07, New York, NY, USA: Association for Computing Ma-
chinery, Jun. 9, 2007, pp. 13-23, 1SBN: 978-1-59593-706-3. DOI: [10.1145/1250662.
1250665. |Online|. Available: https://dl.acm.org/doi/10.1145/1250662.1250665
(visited on 06/06/2024) ( [20).

R. Basmadjian, N. Ali, F. Niedermeier, H. De Meer, and G. Giuliani, “A methodology
to predict the power consumption of servers in data centres,” in Proceedings of the
2nd International Conference on Energy-Efficient Computing and Networking, New
York New York USA: ACM, May 31, 2011, pp. 1-10, ISBN: 978-1-4503-1313-1. DOL:
10.1145/2318716.2318718. |Online|. Available: https://dl.acm.org/doi/10.
1145/2318716.2318718) (visited on 06,/06,2024) ( 20)).

64


https://doi.org/10.1145/3132211.3134464
https://dl.acm.org/doi/10.1145/3132211.3134464
https://doi.org/10.1109/INCIT.2017.8257866
https://ieeexplore.ieee.org/document/8257866
https://ieeexplore.ieee.org/document/8257866
https://doi.org/10.1007/978-3-319-64203-1_7
https://doi.org/10.1109/FMEC.2019.8795334
https://ieeexplore.ieee.org/document/8795334/
https://doi.org/10.1016/j.comcom.2020.01.004
https://doi.org/10.1016/j.comcom.2020.01.004
https://linkinghub.elsevier.com/retrieve/pii/S014036641930831X
https://linkinghub.elsevier.com/retrieve/pii/S014036641930831X
https://doi.org/10.1145/1250662.1250665
https://doi.org/10.1145/1250662.1250665
https://dl.acm.org/doi/10.1145/1250662.1250665
https://doi.org/10.1145/2318716.2318718
https://dl.acm.org/doi/10.1145/2318716.2318718
https://dl.acm.org/doi/10.1145/2318716.2318718

REFERENCES

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Z. Zhang and S. Fu, “Characterizing power and energy usage in cloud computing
systems,” in 2011 IEEE Third International Conference on Cloud Computing Tech-
nology and Science, Athens, Greece: IEEE, Nov. 2011, pp. 146-153. DOI: [10.1109/
CloudCom.2011.29. [Online|. Available: http://ieeexplore.ieee.org/document/
6133138/| (visited on 05/21/2024) ([20} [23).

H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka, “Statistical
power modeling of GPU kernels using performance counters,” in International Con-
ference on Green Computing, Chicago, 1L, USA: IEEE, Aug. 2010, pp. 115-122,
ISBN: 978-1-4244-7612-1. DOI: [10.1109/GREENCOMP . 2010 .5598315. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/5598315/ (visited on 06/06/2024)

([20-

S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and accurate model
of power-performance efficiency on emergent GPU architectures,” in 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, Cambridge, MA,
USA: IEEE, May 2013, pp. 673-686. DOI: 10.1109/IPDPS.2013.73. [Online|. Avail-
able: http://ieeexplore.ieee.org/document/6569853/ (visited on 06/06/2024)
().

Y. Li, A.-C. Orgerie, I. Rodero, B. L. Amersho, M. Parashar, and J.-M. Menaud,
“End-to-end energy models for edge cloud-based IoT platforms: Application to data
stream analysis in [0T,” Future Generation Computer Systems, vol. 87, pp. 667678,
Oct. 2018, 18sN: 0167739X. DOI: 10.1016/j . future.2017.12.048. [Online|. Avail-
able: https : //linkinghub . elsevier . com/retrieve/pii/S0167739X17314309
(visited on 05/21/2024) (

J. H. Laros, P. Pokorny, and D. DeBonis, “Powerlnsight - a commodity power mea-
surement capability,” in 2013 International Green Computing Conference Proceed-
ings, Arlington, VA, USA: IEEE, Jun. 2013, pp. 1-6, 1SBN: 978-1-4799-0623-9. DOI:
10.1109/IGCC.2013.6604485. [Online|. Available: http://ieeexplore.ieee.org/
document/6604485/| (visited on 11,/21/2023) ([21] [30).

N. P. Jouppi, C. Young, N. Patil, et al., “In-datacenter performance analysis of a
tensor processing unit,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, Toronto ON Canada: ACM, Jun. 24, 2017, pp. 1-12, ISBN:
978-1-4503-4892-8. DOI: |10 . 1145 /3079856 . 3080246. |Online|. Available: https :
//dl.acm.org/doi/10.1145/3079856.3080246] (visited on 07/15/2024) ( 22).

W. Lin, F. Shi, W. Wu, K. Li, G. Wu, and A.-A. Mohammed, “A taxonomy and
survey of power models and power modeling for cloud servers,” ACM Computing
Surveys, vol. 53, no. 5, pp. 1-41, Sep. 30, 2021, 18SN: 0360-0300, 1557-7341. DOTI:

65


https://doi.org/10.1109/CloudCom.2011.29
https://doi.org/10.1109/CloudCom.2011.29
http://ieeexplore.ieee.org/document/6133138/
http://ieeexplore.ieee.org/document/6133138/
https://doi.org/10.1109/GREENCOMP.2010.5598315
http://ieeexplore.ieee.org/document/5598315/
https://doi.org/10.1109/IPDPS.2013.73
http://ieeexplore.ieee.org/document/6569853/
https://doi.org/10.1016/j.future.2017.12.048
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17314309
https://doi.org/10.1109/IGCC.2013.6604485
http://ieeexplore.ieee.org/document/6604485/
http://ieeexplore.ieee.org/document/6604485/
https://doi.org/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/3079856.3080246

REFERENCES

[62]

[63]

|64]

10.1145/3406208. |Online|. Available: https://dl.acm.org/doi/10.1145/3406208
(visited on 05/21/2024) ([29} [30).
NVIDIA Corporation, NVML API REFERENCE MANUAL, https://developer.

download . nvidia . com/assets/cuda/files/CUDADownloads /NVML/nvml . pdf,
REFERENCE MANUAL, Accessed: 2024-01-24, 2012. (visited on 12/19/2023) (|30).

M. Jansen, L. Wagner, A. Trivedi, and A. Iosup, “Continuum: Automate infrastruc-
ture deployment and benchmarking in the compute continuum,” in Proceedings of
the First FastContinuum Workshop, in conjuncrtion with ICPE, Coimbra, Portugal,
April, 2023,2023. |Online|. Available: https://atlarge-research.com/pdfs/2023-
fastcontinuum-continuum. pdf ([40] [43).

European Parliament, Directive (EU) 2025/1791 of the European Parliament and
of the Council of 13 September 2023 on energy efficiency and amending Regulation
(EU) 2023/955 (recast), en ([54).

66


https://doi.org/10.1145/3406208
https://dl.acm.org/doi/10.1145/3406208
https://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
https://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf

Appendix

Artifact Description: Prototype End-to-End Model Implemen-

tation

Abstract

This artifact appendix describes how to setup the prototype implementation of the end-
to-end model. Furthermore, it explains how to reproduce results as seen in the thesis. We
describe how to obtain the required software, setup the same environment for experiments
and execute these experiments. This setup consists of multiple parts: the prototype,
continuum framework, benchmarks, and a set of R scripts to reproduce the plots presented

in the thesis.

Artifact Check-list (Meta-information)

e Program: end-to-end-power-model (https://github.com/davidfreina/VU-Thesis-24/
tree/main/end-to-end-power-model), continuum framework

(https://github.com/atlarge-research/continuum)
e Compilation: Python3 (end-to-end-power-model, continuum framework), R (plotting)
¢ Run-time environment: Ubuntu 22.04.3 LTS, Python 3.10.12, root access required
e Hardware: Host system CPU with Intel RAPL support
e Execution: Approximate maximum runtime 3min
e Metrics: Power consumption
e Output: Console, CSV-file

e Experiments: Provided by continuum framework (https://github.com/atlarge-research/

continuum/tree/main/application/image_classification
e Publicly available?: Yes
e Code licenses (if publicly available)?: MIT

e Workflow framework used?: Continuum framework
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Description

How to access

The end-to-end-power-model and continuum framework can be obtained by cloning from
Github:

$ git clone https://github.com/davidfreina/VU-Thesis-24.git
$ git clone https://github.com/atlarge-research/continuum.git

The end-to-end-power-model can be found in "VU-Thesis-24/end-to-end-power-model".

The plotting tools can be found in "VU-Thesis-24/plotting".

Hardware dependencies

The CPU in the host system must have Intel RAPL compatibility.

Software dependencies

The software will only run on GNU /Linux and was specifically tested on Ubuntu 22.04.3
LTS. Furthermore, Python3 is required with the psutil package is required (refer to "VU-
Thesis-24 /end-to-end-power-model /requirements.txt". For the plots R in version 4.4.1 and
the packages ggplot2, reshape2, scales, and dplyr are required.

Details about the setup of the continuum framework can be found in its repository
(https://github.com/atlarge-research/continuum/tree/main?tab=readme-ov-filet

part-1-install-the-framework).

Software and Hardware Configuration

All tests are run either bare-metal or on top of QEMU 6.2.0 with KVM enabled.

Host system

e Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz with two sockets connected in
NUMA mode.

e 256GB DDR4 RAM
VM’s The virtual machines are deployed on the host system using the continuum frame-

work. The required configurations can be found in "VU-Thesis-24/end-to-end-power-

model/continuum-configurations"
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Installation

Because all executable files are written in interpreted rather than compiled languages the
installation steps are minimal. For the end-to-end-power-model the installation of the

psutil dependency is required:
$ pip install -r VU-Thesis-24/end-to-end-power-model/requirements.txt

The installation of the continuum framework is more elaborate. Because it is only a
dependency for us we refer to the installation and setup instruction on its own repository
(https://github.com/atlarge-research/continuum/tree/main?tab=readme-ov-file#
part-1-install-the-framework). However, we provide the configuration files used for

the continuum framework in "VU-Thesis-24 /end-to-end-power-model /continuum-configurations".

Experiment workflow

After setting up the execution environment using the continuum framework with the pro-
vided configuration files the image-classification workflow is executed automatically. When
this execution is finished the continuum framework will provide the necessary commands

to ssh into the deployed VMs.

Setup Edge (INOTE: This only applies if the edge.cfg file is deployed.) We SSH into
the edge node and clone the end-to-end-power-model repository. The power measurement

can be started using the following command:

$ python3 energy monitor.py edge

Using a second SSH session, the subscriber for the image-classification experiment can

also be started:

$ docker container run —rm —cpus=3 —memory=1000m —mnetwork
=host —env MQIT LOCAL IP=192.168.210.3 —env MQIT LOGS=
True —env ENDPOINT CONNECTED=1 —env CPU THREADS=3 —mname
image—classification 192.168.1.101:5000/
image classification subscriber

Setup Cloud (NOTE: This only applies if the cloud.cfg file is deployed.) We do not use
the VM created by the continuum framework for the experiment execution due to missing
support for Intel RAPL in virtualized enviroments. Therefore, we clone the repository to

the host and start the power measurement:

$ sudo python3 energy monitor.py cloud
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(NOTE: sudo is required to access the sysfs interfaces for Intel RAPL measurements.)
Using a second SSH session, the subscriber for the image-classification experiment can

also be started:

$ docker container run —rm —cpus=3 —memory=3500m —network
=host —env MQIT LOCAL IP=192.168.210.3 —env MQIT LOGS=
True —env ENDPOINT CONNECTED=1 —env CPU_THREADS=3 —mname
image—classification 192.168.1.101:5000/
image classification subscriber

Setup Endpoint After setting up the power measurement on either the edge or cloud
node we can setup the endpoint node. First we use the provided SSH command to connect
to the VM and clone the Github repository containing the end-to-end-power-model. We

can now already start the power measurements with the following command:

$ python3 energy_monitor.py endpoint

Using a second SSH session, the publisher for the image-classification experiment can

also be started:

$ docker container run —rm —cpus=4 —network=host —env
FREQUENCY=5 —env DURATION=30 —env MQIT LOCAL IP
=192.168.210.4 —env MQIT REMOTE IP=192.168.210.3 —env
MQIT LOGS=True —env CLOUD CONTROLLER IP=192.168.210.2 —
name cloud0 endpoint0 192.168.1.101:5000/
image classification publisher
(NOTE: This command is used to produce the results for a 5FPS execution of the ex-
periment (refer to Figure [6.2f). If the 30FPS experiment should be reproduced the FRE-

QUENCY variable has to be change from 5 to 30.)

Gathering and Plotting Results After the docker commands have finished the power
measurement process can be stopped (CTRL+C). The results are saved to CSV files in
the same folder where the energy monitor.py was executed. They are named after their
respective command (edge.csv, cloud.csv, and endpoint.csv).

Depending on the execution (cloud/edge) the plotting script for Figure can be found
in "VU-Thesis-24 /plotting /figure6.2 /edge" or "VU-Thesis-24 /plotting/figure6.2 /cloud" re-
spectively. The script requires the edge.csv/cloud.csv and endpoint.csv to be placed in the

same folder as the script itself.
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Additional Experiments

#include <stdio.h>
#include <stdlib .h>

int fib (int n) {

}

if (n — 0)
return O0;
if (n— 1)
return 1;
return fib (n—1) + fib(n—2);

int main(int argc, char const xargv|[])

{

if (arge != 2)

printf("Usage:_./fib_N\n");
printf ("The_argument_supplied_is _%s\n", argv|1l]);
printf ("%d\n", fib(atoi(argv[1l])));

return O0;

Listing 1: Micro-benchmark used to evaluate Scaphandre and Kepler
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