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Abstract

Resource managers such as Kubernetes are rapidly evolving to
support low-latency and scalable computing paradigms such as
serverless and granular computing. As a result, Kubernetes sup-
ports dozens of workload deployment models and exposes roughly
1,600 configuration parameters. Previous work has shown that pa-
rameter tuning can significantly improve Kubernetes’ performance,
but identifying which parameters impact performance and should
be tuned remains challenging. To help users optimize their Ku-
bernetes deployments, we present Columbo, an offline reasoning
framework to detect and resolve performance bottlenecks using con-
figuration parameters. We study Kubernetes and define its workload
deployment pipeline of 6 stages and 26 steps. To detect bottlenecks,
Columbo uses an analytical model to predict the best-case deploy-
ment time of a workload per pipeline stage and compares it to
empirical data from a novel benchmark suite. Columbo then uses a
rule-based methodology to recommend parameter updates based on
the detected bottleneck, deployed workload, and mapping of config-
urations to pipeline stages. We demonstrate that Columbo reduces
workload deployment time across its benchmark suite by 28% on
average and 79% at most. We report a total execution time decrease
of 17% for data processing with Spark and up to 20% for serverless
workflows with OpenWhisk. Columbo is open-source and available
at https://github.com/atlarge-research/continuum/tree/columbo.
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Figure 1: Our approach, Columbo, reduces deployment time
for 100 containers by 37% compared to default Kubernetes.
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1 Introduction

Containerization is a popular way to package, distribute, and run
data processing [9] and serverless [8] applications. Single-machine
container runtimes, such as Docker and containerd, start and stop
containers, with distributed container managers on top control-
ling containers across computing infrastructures. Kubernetes is
the most popular distributed container manager and is used by
64% of end-users in production [5]. To support diverse workloads
and infrastructures, Kubernetes has developed an extremely mod-
ular, distributed, configurable, and, consequently, complex (con-
tainerized) workload deployment pipeline. Although such complex
pipelines have been defined and studied for systems like Spark [31]
and Mesos [7], and understanding the pipeline was found to be key
in optimizing performance, Kubernetes performance studies are
limited to isolated pipeline components [4, 18] and do not consider
the pipeline or the configuration space that manages its function-
ality as a whole. To address this gap, in this work, we conduct
the first extensive analysis of Kubernetes’ workload deployment
pipeline and propose the Columbo framework to update Kubernetes
configurations for improved container deployment performance.
We show the impact of Kubernetes configurations on the deploy-
ment of 100 containers on a single machine in Figure 1. We make
three observations. First, the distributed Kubernetes with its default
configuration introduces a significant performance overhead over
the single-machine container runtime containerd, being 6.4x slower.
Hence, we conclude that the performance and scalability overheads
lie with Kubernetes, not the container deployment. Second, even
a provider-managed Kubernetes deployment, such as shown here
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Table 1: Survey of scientific literature on the use of Kuber-
netes and its configuration since 2019.

Category Frequency
Uses Kubernetes 40
Mentions configuration 12
Artifact available 19
Configuration in artifact 9

from Google Kubernetes Engine (GKE), only achieves minimal (7%)
performance gains over a default deployment. Third, Columbo, our
approach, significantly improves Kubernetes’ performance (37%)
over the default via an automatic rule-based configuration tuning
methodology. From these observations, we conclude that it is im-
perative for any production-grade setup to evaluate its Kubernetes
configuration to meet application demands.

However, optimizing the configuration space beyond the default
setting is non-trivial. We identify three challenges toward solving
this problem. First, there is a lack of understanding of Kubernetes’
workload deployment pipeline and configuration space. We report
that a modern, fault-tolerant Kubernetes setup (as of version 1.27)
can contain upwards of 9 distributed components with multiple
parallel replicas, a workload deployment pipeline of up to 26 steps,
and 1,600 configuration parameters to configure these steps (Sec-
tion 2). This is much more complex than related systems such as
Mesos (version 1.11.0) and Spark (version 3.4.1), with 279 and 579
parameters, respectively. While the complexity of these systems has
been studied in-depth and is well-understood, which has resulted
in advanced configuration optimization strategies [7, 31], Kuber-
netes performance studies are limited (Section 8). We argue that
Kubernetes’ complexity requires a root-cause analysis approach to
facilitate automatic and efficient configuration tuning.

Second, there is a lack of tools to reason how parameters affect
Kubernetes” workload deployment Existing work focuses on the per-
formance of specific pipeline components [19] or fit to particular ap-
plications [17], not on the operation of the pipeline as a whole [22].
We propose a methodology to detect performance bottlenecks in
Kubernetes’ workload deployment pipeline using analytical models
and empirical benchmarks, and construct configuration rules to
programmatically find parameters that resolve bottlenecks.

Third, there is a lack of guidelines regarding how to optimize
Kubernetes for a given workload or infrastructure. We conduct a
survey of papers published (Table 1) since 2019 in systems con-
ferences (ATC, EuroSys, HPDC, ICDCS, ICPE, Middleware, NSDI,
OSDI, SoCC) with their artifacts. We report that out of the 40 papers
that use Kubernetes, less than 30% mention its configuration and
none the deployment pipeline. We further analyze the Kubernetes
GitHub repository [16], a prominent location for practitioners to
discuss Kubernetes, and find that out of 10,000 issues, 20% mention
Kubernetes’ configuration (2,024), 33% mention the configuration
API (3,253), and 10% mention YAML files that store configurations
(1,026), and are part of Kubernetes’ fragmented configuration sys-
tem. Our survey demonstrates that Kubernetes’ configuration is a
source of concern for practitioners because of the large, complex
configuration space and lack of structured guidelines on how to nav-
igate the space. We demonstrate how Columbo requires a one-time,
expert-driven effort to automate its day-to-day operations.
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Figure 2: Kubernetes’ architecture, distributed over the user
device, control plane, and data plane/worker nodes.

To address the aforementioned challenges, in this work, we sys-
tematically study Kubernetes and define its workload deployment
pipeline to model, measure, and optimize how Kubernetes deploys
applications. To this end, we design and implement Columbo, a
reasoning framework to detect and resolve performance bottle-
necks in pipeline stages using Kubernetes configuration parameters.
Columbo consists of an analytical model, a benchmark suite, and a
rule-based methodology. We make the following contributions:

(1) We analyze Kubernetes and argue that its complexity requires a
root-cause analysis-based approach to efficiently find configura-
tion parameters that optimize workload deployment (Sections 2)

(2) We present the design of Columbo, an offline reasoning frame-
work for faster Kubernetes workload deployment by optimizing
its configuration space through performance bottleneck detec-
tion and parameter optimization rules (Section 3).

(3) We define Kubernetes’ workload deployment pipeline of 6 stages
and 26 steps, and capture its best-case deployment time in an
analytical model (Section 4).

(4) We synthesize configuration rules that allow Columbo to find
parameters updates that resolve detected bottlenecks (Section 5).

(5) We demonstrate Columbo’s user-driven and automated day-to-
day operations and evaluate its ability to resolve bottlenecks
(Section 6). Compared to the default, Columbo decreases de-
ployment time by 28% across a novel benchmark suite and total
execution time by 17% for data processing on Spark and up to
20% for serverless workflows on OpenWhisk (Section 7).

(6) We publish Columbo as an open-source artifact: https://github.
com/atlarge-research/continuum/tree/columbo.

2 Background and Motivation

We first present a study on Kubernetes’ architecture (Section 2.1)
and configuration space (Section 2.2) to understand the complexity
in optimizing workload deployment performance. Next, we discuss
limitations of existing performance optimization approaches and
the need for Columbo (Section 2.3).

2.1 Architecture Overview

Kubernetes is a system for deploying containerized applications. It
consists of 9 components that form the control plane, responsible for
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managing containers, and the data plane, responsible for executing
control plane decisions. Users describe containerized workloads in
workload files and submit them via the command line tool kubectl
(@ in Figure 2) to the control plane (@). A workload file describes
workload objects, which are services that run indefinitely or jobs
that run until completion. This paper focuses on job-type workloads
because they benefit most from optimizing deployment overhead
due to their limited lifespan.

The control plane consists of multiple, possibly replicated, com-
ponents and, together with the data plane, depends on external
components for specialized services, such as a database and con-
tainer runtime. Central to the control plane is the API server. It pro-
vides an interface for reading and writing to a persistent datastore.
This datastore stores the current and desired state of workloads.
All other control plane components move a workload’s current
state toward its desired state using control loops. A control loop
(i) watches the datastore through the API server, (ii) reads new or
updated objects, (iii) performs an action based on the read object,
and (iv) writes back objects. For example, the controller manager
reads submitted job objects, creates pod objects described in the
jobs, and writes them to the datastore (€)). Pods are the scheduling
unit of Kubernetes and house containers. The scheduler reads the
pod objects, makes a scheduling decision, and writes that back (@).

The data plane is located on worker nodes that execute work-
loads. Each worker has a kubelet that communicates with a container
runtime. The kubelet reads pod objects that have been scheduled
onto its node (@), tasks the container runtime with creating pods
and containers (@), and writes status updates to the control plane.

2.2 Configuration Complexity

Kubernetes’ API defines objects, including workloads (e.g., jobs), in-
frastructures (e.g., nodes), and control and data plane configurations
(e.g., scheduling algorithm). In this work, we focus on optimizing
Kubernetes workload deployment performance through control and
data plane configurations, which we call the configuration space. We
survey the documentation of the configuration space and present
an overview for Kubernetes version 1.27 in Table 2.

Users modify configuration parameters by submitting configura-
tion files, similar to workload files, or via the command line (CLI)
when starting a component. Kubernetes configuration files cover
234 API objects that group 1,067 parameters, and the CLI covers an
additional 531 parameters for a total of 1,598. Additional parame-
ters are not exposed by the API and only accessible via Kubernetes’
source code. We leave configurations from external components
such as the datastore and container runtime as future work.

2.3 Limitations of Existing Approaches

Existing performance optimization approaches for Kubernetes [13,
32, 34] consider either its whole configuration space (e.g., brute-
force) or require users to define which parameters and values to op-
timize within. The brute-force approach is extremely time-intensive
as applying a single configuration update requires the affected com-
ponents to restart or recompile, which takes up to multiple minutes.
Therefore, brute-force approaches either stop preemptively or up-
date many parameters at once to reduce cost. However, both have
significant drawbacks: Either only a part of the configuration space
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Table 2: Summary of Kubernetes v1.27’s configuration space:
A total of 234 API objects and 1,598 parameters.

Component File CLI
Objects Params Params
API server 39 149 152
Controller manager 37 147 132
Kubelet 31 206 133
Proxy 9 61 59
Scheduler 69 315 55
Other 50 189 0
Total 234 1,067 531

is explored (preemptive), or the performance impact of individual
parameters cannot be correctly quantified, leaving in those with a
negative impact (many at once). The user-input approach considers
a subset of the parameter space but is time-intensive nonetheless.
Moreover, the subset may not include the configuration leading to
optimal performance and requires user expertise to be defined.

To resolve the shortcomings of existing approaches, we argue for
anew and automated approach to configuration optimization using
root-cause analysis. With root-cause analysis, we reason about what
parameters optimize performance, allowing us to consider the entire
configuration space time-efficiently. Our approach consists of two
parts: First, a one-time, expert-driven effort to define Kubernetes’
workload deployment pipeline, model its performance, and create
configuration update rules. Second, building Columbo, a workload-
dependent, user-driven bottleneck detection framework.

3 Columbo Design

We present the design of Columbo, an automated offline configu-
ration tuning framework for faster container deployment in Ku-
bernetes. We first outline Columbo’s day-to-day use by non-expert
users, which only requires input on the workload and Kubernetes
cluster to tune configurations for. Next, we examine three research
questions that form the core of a one-time, expert-driven effort to
enable Columbo’s highly-automated day-to-day operations.

3.1 Day-to-day Operation

A non-expert user supplies Columbo with a workload configura-
tion to optimize the deployment of. If the user wants to optimize
for a range of workloads, they should supply the most resource-
demanding workload to Columbo as less demanding workloads
will benefit equally from their optimization, but not vice versa.
We discuss this in-depth in Section 4. Additionally, the user sup-
plies a Kubernetes configuration which Columbo modifies to bring
the deployment performance optimization about (@ in Figure 3).
The default or a modified Kubernetes configuration can be used,
allowing any cluster to be optimized by Columbo.

Columbo follows an iterative root-cause analysis approach where
it proposes a single configuration update at a time that is predicted
to increase deployment performance the most. The iterativity guar-
antees that the performance impact of each configuration update
can be accurately quantified. The root-cause analysis consists of two
parts: Bottleneck detection and rule-based parameter attribution.
For bottleneck detection, Columbo defines Kubernetes’ workload
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Figure 3: Design of the Columbo Reasoning Framework.

deployment pipeline and predicts the time the user’s workload
spends in each pipeline stage with an analytical model (@). Simi-
larly, Columbo measures the time spent per pipeline stage using a
benchmark suite on a Kubernetes cluster. The stage with the largest
discrepancy between the best-case prediction and real-world mea-
surements has the largest performance optimization potential and
is marked as the primary workload deployment bottleneck (€)).
Columbo’s root-cause analysis depends on the hardware it exe-
cutes on because application deployment could be constrained by
resources rather than Kubernetes configuration. Deploying appli-
cations faster typically involves executing more work in less time,
hence increasing resource utilization and depending on resource
availability. Columbo reports resource utilization and recommends
users to add more resource if it detects high utilization. We rec-
ommend users to deploy Columbo on the most performant hard-
ware under consideration to uncover configuration bottlenecks
that would remain hidden if deploying Columbo only on resource-
constrained devices. Users can execute Columbo on multiple hard-
ware setups to adapt to various resource constraints in a single
configuration. Columbo does not assume anything about the under-
lying hardware and adapts to any platform Kubernetes supports.
Columbo uses rule-based parameter attribution and a rate-limiting
throughput analysis to recommend configuration parameters and
values that resolve the primary bottleneck. Three findings underpin
our methodology: (i) each workload pipeline stage processes one
type of workload object, such as the scheduler only processing
pod objects; (ii) a part of the configuration space consists of nu-
merical parameters that define the (concurrent) processing rate of
such objects through stages, such as the kube-api-qps parameter
defining the number of job and pod objects that may be written
to the database per second; (iii) these parameters often limit the
object processing rate, for example, when kube-api-gps allows for
10 job objects to be written per second while a user wants to create
100 jobs at once, creating artificial rate-limiting delays. Columbo
requires a one-time effort to construct a parameter rule per configu-
ration parameter. A rule defines (i) what pipeline stage a parameter
affects, (ii) what API workload object a parameter affects, and (iii)
the current value (processing limit) of the parameter. Columbo
selects the subset of parameters that map to the primary bottle-
neck stage, and further reduces the selection of parameters to those
which limit the processing of objects from the user workload. For
the prior kube-api-qps example, Columbo suggests the user to up-
date this parameter to the number of job objects in their workload
(i.e., 100 objects), and informs the user of the predicted performance
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Table 3: Kubernetes architecture mapped to the AtLarge dat-
acenter scheduling reference architecture [1]. proc= process-
ing; man= management; Sched= scheduler; Cont= container.

Responsi- Kubectl Controller Scheduler Kubelet
bility Manager

Job proc. Stage 1  Stage 2

Pod proc. Stage 3

Sched. man. Stage 4

Pod man. Stage 5
Cont. man. Stage 6

gain (@). The user may update their Kubernetes configuration and
restart Columbo for a new configuration suggestion.

3.2 Expert-driven Design Requirements

The day-to-day operation of Columbo is highly-automated and sim-
plified for non-expert users but requires a one-time, expert-driven
effort to define Kubernetes’ workload deployment pipeline, create
a performance model for the pipeline, build a benchmark suite, and
construct configuration rules. We pose 3 research questions that
drive the development of those components.

RQ1: How do we define and model Kubernetes’ workload
deployment pipeline? We find that Kubernetes’ use of control
loops transforms its workload deployment process in a pipeline
where each pipeline stage processes a single workload object and
generates one or more new objects to be consumed by the next stage.
We define Kubernetes” workload deployment pipeline using the
AtLarge reference architecture for datacenter scheduling [1], which
provides a blueprint for resource management pipelines (Section 4).
The mapping results in a pipeline for Kubernetes of 6 stages and 26
steps, which’ performance we capture in an analytical model.
RQ2: How do we reason about performance bottlenecks in
Kubernetes’ pipeline and attribute configuration updates? We
build a benchmark suite to gather real-world workload deployment
performance data which Columbo compares to the best-case ana-
lytical model prediction to find performance bottlenecks (Section 6).
Next, we present a methodology to prune the Kubernetes configu-
ration space to only include performance-related parameters and
build configuration optimization rules for each (Section 5).

RQ3: How do non-expert users use Columbo to optimize their
workloads? We synthesize a methodology for how users can use
Columbo and iteratively apply advised configuration parameter up-
dates to optimize workload deployment performance (Section 6.3).
Users only have to decide whether to use the suggested parameter
update, marked in gray in Figure 3.

4 Columbo Analytical Model for Kubernetes’
Workload Deployment Pipeline

To address RQ1, we analyze the Kubernetes workload deployment
process to find an architecture to capture the process in. We find
this process to resemble a pipeline, with each pipeline stage us-
ing a control loop that reads an API object from the datastore and
writes one or more new or updated objects back. We define the
deployment process as a pipeline by mapping it onto the AtLarge
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Figure 4: Workload-deployment pipeline in Kubernetes, di-
vided into 6 distinct stages, with a total of 26 steps.

reference architecture for datacenter scheduling [1]. This architec-
ture provides a comprehensive and detailed conceptual model for
distributed scheduling with a resource management and deploy-
ment pipeline. It provides a blueprint of a pipeline architecture,
how to define stages and functional relationships among them,
and shows how to apply such model for exemplary systems like
Borg [30] (predecessor of Kubernetes). We adapt this model to Ku-
bernetes with minor modification, certifying its comprehensiveness.
Working without such reference architecture requires an expensive
design and validation process.

The reference architecture defines four major responsibilities:
job processing, task processing, scheduler management, and re-
source management. We map these four responsibilities onto a
new workload deployment pipeline of 6 stages (Figure 4 and Ta-
ble 3) and adapt it to Kubernetes’ major workload objects, being
jobs, pods, and containers. Each stage processes a single object on
a single architectural component. We extend the reference archi-
tecture’s 4 responsibilities to 6 stages by differentiating between
job processing at the user (kubectl) and control plane (controller
manager) and splitting resource management into pod and con-
tainer management. Furthermore, we rename task processing to
pod processing, as these are Kubernetes’ units of scheduling. The 6
stages are divided into 26 steps, with each step describing a com-
munication between two architectural components. The API server
and datastore are used across stages to read and write workload
and cluster data. The resulting pipeline describes in detail how a
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Table 4: Overview of model parameters.

Symbol Definition Phase
Ter Time to start kubectl 1
Tir Time to translate workload 1
L Latency from user to API server 1
T Time to write object to datastore 1,3-6
T Time to read object from datastore 2,4-6
Tepo Time to create a pod object 3
Tse Time to schedule a pod location 4
Teg Time to create cgroup 5
Thn Time to create network namespace 5
Tmo Time to mount volume to pod 5
Tes Time to create pod sandbox 5
C Number of containers in pod 6
Tec,i Time to create container i 6
Tsc,i Time to start container i 6

submitted workload gets processed by the control plane and de-
ployed onto worker nodes. Though the pipeline definition requires
detailed analysis from an expert, we argue that this is one-off effort
as the underlying architecture of Kubernetes has been stable since
its inception. We demonstrate the generalizability of the pipeline
through experiments in Section 6.6.

4.1 Columbo Analytical Model Overview

We synthesize a first-order analytical model per Kubernetes pipeline-
stage, which, taken together, describes the best-case deployment
time of a workload (Section 4.8). This best-case prediction assumes
each stage can process objects in parallel without any dependency
between objects, following the design of control loops, and paral-
lelism is only limited by available hardware, not Kubernetes config-
urations. Based on this definition of a best-case execution, Columbo
only considers configurations that manage concurrent object pro-
cessing. The model uses a simple multi-core algorithm to schedule
stages onto hardware, which assumes an executed stage to use a
single CPU core. Columbo compares the model’s best-case predic-
tions against real-world measurements from a benchmark suite to
detect performance bottlenecks in Section 6, which also functions
as validation of the model. The remainder of this section presents
the analytical model per stage, focusing on details pertaining to
parallelism management within each stage (parameters in Table 4).

4.2 Stage S1: Create Workload Object (CWO)

Users submit workload description files to kubectl (@ in Figure 4
and Ty in Equation 1). Kubectl translates the workload objects
in the files (T3,), such as jobs, and requests the API server to cre-
ate the objects (@ and L). To protect control plane components
from flooding the API server with requests, the rate with which
components can send requests to the API server can be configured
in terms of queries-per-second (QPS). Requests that would exceed
the QPS are withheld, slowing down the deployment process. The
API server verifies each request, creates the requested objects, and
writes them to the datastore (@ and T,,). These write requests can
also be rate-limited to protect the datastore.

Ts1 =T+ Tir + L+ Ty (1)



ICPE ’25, May 5-9, 2025, Toronto, ON, Canada

4.3 Stage S2: Unpack Workload Object (UWO)

The controller manager watches the datastore for newly created
workload objects (e.g., jobs) and forwards them to the corresponding
controller (e.g., a job controller). These watches go through the API
server, which verifies the operation (@@ and T, in Equation 2).
Tsz =Ty ()

4.4 Stage S3: Create Pod Object (CPO)

Workload objects contain pods, which the controller unpacks, cre-
ates (@ and Tp, in Equation 3), and writes to the datastore (T, and
O—@). Pods are unpacked in batches, and the remaining pods must
wait for the current batch to be processed, delaying deployment.
The batch size is configurable in source code only. The writes to the
datastore go via the API server and are subject to the API server’s
concurrency limit, previously mentioned in stage 1, forming a scal-
ability bottleneck when creating many pods at once.

Tss = Tepo + T (3

4.5 Stage S4: Schedule Pod (SP)

The scheduler watches the datastore for newly created pod objects
and adds them to a scheduling queue after verifying their eligibility
for scheduling (@—@ and T, in Equation 4). The scheduler pro-
cesses the pods in its queue, for each gathering the current state of
all worker nodes and filtering them based on user permissions and
application specifications (e.g., requires a GPU). The best-fitting
node is selected out of this list (Tsc) and written back to the datastore
as the pod’s scheduled target (@—@ and T,).

Tsqg =T + Tsc + Ty (4)

The scheduler is heavily reliant on the API server to read pod
objects and node statuses and write back scheduling decisions. How-
ever, the cluster’s state can be cached at the scheduler, reducing the
number of read requests. The sequential processing of pods in the
queue might create a performance bottleneck as well, which is dif-
ficult to mitigate without major changes to Kubernetes’ scheduling
design. However, the scheduling time per pod is often a fraction
of the time required to create the pod and containers unless heavy,
possibly Al-enhanced scheduling algorithms are used.

4.6 Stage S5: Create Pod (CP)

Each worker node runs one kubelet that watches the datastore for
pod objects that are scheduled onto its node (@) The kubelet reads
the pod object (@—@ and T, in Equation 5) and asks the container
runtime to create the pod. This includes using cgroups to restrict
the resources the pod and the containers in the pod can use (Tcg)
and setting up network (T,,) and storage namespaces. The latter
comprises inventorying what volumes the pod requires, such as
container images, comparing them to the volumes already available
on the node, fetching the missing volumes, and mounting them to
the pod’s file system (Tp;,,). Finally, the kubelet sets up a sandbox
that integrates the cgroups and network/storage namespaces for
the containers to live in (@ and Tcs).

Tss =Tr + Tcg + Ton + Trno + Tos (5
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Fetching volumes is an important bottleneck when creating pods,
as a single image can be hundreds of megabytes in size or more,
which can take minutes to download. Additionally, many of the pod
and container creation steps are CPU and memory-demanding. This
becomes an even more important problem as the kubelet, container
runtime, and operating system processes on worker nodes have to
compete for resources with each other and deployed applications.

4.7 Stage S6: Create Container (CC)

Finally, containers are started in the pod (@). Pods can contain
multiple types of containers, such as ephemeral containers, which
are used to inspect other containers; init containers, which are
guaranteed to execute only once at pod startup; and application
containers with the user’s workload. All containers (C in Equation 6)
inside a pod are created in sequence (T¢c), and then started in
sequence (Ts¢). This is not configurable. However, containers from
different pods can be started in parallel.

C C
Tge = Z(ch,i) + Z(Tsc,j +Tw) (6)
i=0 7=0
Status updates are sent to the datastore for every started con-
tainer, and once all containers in a pod have started (@—@ and
T). These status updates can be rate-limited by the API server.

4.8 Deployment Time Prediction

Columbo deploys a single container of a user’s workload and mea-
sures the time spent in each deployment step. This data is used
to fill the model’s pipeline step parameters (e.g., Tepo, Tcg)- Then,
Columbo calculates how much each pipeline stage is executed using
workload properties such as the number of jobs J, pods per job
P, and containers per pod C. Finally, mimicking operating system
schedulers, Columbo uses a multi-core scheduling algorithm to
schedule the pipeline step executions onto the available hardware,
using the user’s defined number of worker nodes in use N (we
assume a single control plane node), and CPU cores on the control
plane U, and per worker node U,,.

T= (Ts1+Ts2) X[J/Uc]
+ (Ts3 + Tsq) X [(J X P) /U] (7)
+ (Tss + Tse) X [(J X P) /(N X Uy)]

We demonstrate the use of the model in practice in Section 6.3.
There, we also measure the accuracy of the model by comparing
its predicted optimal deployment time to Columbo-optimized per-
formance of various deployments. The closer these are, the better
the model captures Kubernetes’ workload deployment pipeline.

5 Rule-based Configuration Space Pruning

Once the workload pipeline is defined by an expert, it can be applied
to study the role of configuration parameters in the performance
of Kubernetes (RQ2). We do this by mapping the configuration
space to model stages and generate rules on how to navigate the
space based on Columbo’s bottleneck detection. In this section,
we present Columbo’s methodology for finding parameters and
parameter values to update to resolve bottlenecks.
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Table 5: Selection of Columbo optimization rules to resolve
common Kubernetes workload deployment bottlenecks with
default parameter values for Kubernetes version 1.27.

Object Value

Step Stage Parameter

Tw 1,3,6 max-mut.-requests-inflight #containers 200
Tepo 3 SlowStartlInitialBatchSize #pods 1
Tw 3 kube-api-qps #pods 20
Tw 4  kube-api-qps #pods 50
Tino 5 registryPullQPS #containers 5
Tino 5 maxParallellmagePulls #containers

Ty 6 eventRecordQPS #containers 50
T 6 kubeAPIQPS #containers 50

5.1 Configuration Space Pruning

Kubernetes’ configuration space includes many parameters that
do not affect performance, such as the cluster’s name or security
credentials, and should not be considered when building param-
eter rules. Columbo prunes these parameters using a one-time,
expert-driven construction of inclusion and exclusion criteria. With
limited criteria, Columbo finds only a small fraction of performance-
sensitive parameters, which it can build rules for.
These criteria are as follows:

(1) We exclude experimental and deprecated API features.

(2) We exclude parameters that do not affect deployment per-
formance or primarily affect other properties (e.g., security).

(3) We only include numerical parameters. Columbo applies
a rate-limiting throughput analysis (Section 3.1) to reason
about parameter updates, and rates are numerical by nature.
Non-numerical parameters typically enable, disable, or set
functionalities, such as encryption or scheduling algorithms,
and don’t have such a performance intuition. We will include
non-numerical parameters in future work.

Columbo uses these criteria to programmatically filter the con-
figuration documentation of Kubernetes version 1.27, and finds
61 parameters that satisfy. These criteria are version independent.
Columbo can use the same criteria to find 59 parameters for Ku-
bernetes version 1.26. Columbo also applies these criteria to filter
variable declarations in Kubernetes’ source code and finds 62 con-
figuration parameters for Kubernetes version 1.27 that satisfy and
are not exposed through the Kubernetes API. Columbo’s static text-
based filtering is not guaranteed to find only parameter that affect
performance. We use a one-time manual pruning to reduce the
selection of parameters to 42 for Kubernetes 1.27, which will have
configuration rules built. Moreover, expert users can continuously
update the parameter selection by analyzing the effectiveness of
configuration recommendations produced by Columbo. For future
work, we plan on investigating more elaborate semantic search and
machine learning approaches.

5.2 Configuration Rule Construction

Columbo automatically builds a parameter optimization rule for
each of the 42 selected parameters using information from the static
text-based filtering of Kubernetes’ configuration documentation. A
rule defines the pipeline stage and step a parameter maps to, the
workload object the parameter affects, and the current value of the
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parameter. We show a subset of the rules in Table 5. Columbo uses
the aforementioned rate-limiting throughput analysis to recom-
mend configuration updates through parameter rules. For example,
if Columbo finds a bottleneck in stage 3, which processes pods,
and the user’s workload includes 10 pods, Columbo finds the pa-
rameter rule for the SlowStartlnitialBatchSize parameter to limit
performance as it only allows for 1 pod to be processed at a time.
As such, Columbo advices the user to update this parameter to a
value of 10.

6 Columbo Evaluation

We construct a benchmark suite of various Kubernetes workload
deployment patterns and apply Columbo to the suite to evaluate
its ability to detect and resolve bottlenecks. Specifically, we answer
the following questions with Columbo:

Q1. How does Kubernetes’ workload deployment time scale
when deploying containerized applications concurrently?
Columbo deploys workloads with 1 and 100 containers and
finds a 20x difference in deployment time and a 2.8x difference
for the fastest deployed container (Section 6.2).

Q2. How do users use Columbo to optimize their workload’s
deployment performance? We present a use-case of how
Columbo reduces the deployment time of a particular workload
by 79.1% over three iterations, with minimal user input.

Q3. Does the deployment method affect deployment time
and the performance optimization? Columbo deploys a
workload with 100 containers with containers partitioned be-
tween multiple workload description files, jobs, pods, and con-
tainers per pod (Section 6.4). It finds a performance difference
of up to 58% between deployment methods and decreases de-
ployment time between 5% and 37%, limited by CPU usage.

Q4. How does workload deployment time scale with mul-
tiple worker nodes using the Kubernetes default and
Columbo-optimized configuration? Columbo applies weak
and strong scalability, deploying workloads with 100 con-
tainers per node and across all nodes (Section 6.5). Columbo
achieves an average reduction in deployment time of 27.6%
across all 14 microbenchmarks, and up to 79.1%.

Q5. What is the performance difference between Kubernetes
versions? Columbo finds Kubernetes version 1.26 to deploy
100 containers 1.4x slower than version 1.27 due to a differ-
ence in default configuration settings (Section 6.6). Columbo
eliminates this difference through configuration updates.

6.1 Benchmark Design and Setup

Columbo creates a Kubernetes cluster with a default or user-defined
configuration (Figure 3). On the cluster, it deploys a workload from
the benchmark suite. A benchmark describes, among others, ap-
plication parameters, the container image to use, how many jobs,
pods, and containers to use, and the number of worker nodes in
the cluster. To achieve this, Columbo uses Continuum [12], an
infrastructure deployment and benchmarking framework.

The benchmark suite covers several common workload deploy-
ment patterns across 14 microbenchmarks: Scaling containers on
a single node (Q1) or across multiple nodes (Q4) using multiple
deployment methods (Q3). These patterns cover the primary ways
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users can deploy and scale up workloads and thus show the primary
scalability limitations users can expect when scaling up. We use a
standard Python 3 container image (114 MB in size) as the applica-
tion container and cache the image on all worker nodes to eliminate
downloading overhead. Unless stated otherwise, Columbo deploys
Kubernetes version 1.27 (Q5) with its default configuration on e2-
highmem-8 virtual machines from Google Cloud with 8 CPU cores
and 64 GB RAM. It uses one machine to host Kubernetes’ control
plane and up to 16 machines as worker nodes. Columbo uses a
customized Kubernetes implementation to measure the time spent
in each pipeline step (deployment data in Figure 3). We repeat all
experiments 5 times and report the best run.

6.2 Concurrent Deployments

To answer Q1, Columbo deploys a single container (Figure 5) and
100 containers on a single node (Figure 6), and measures their de-
ployment time per pipeline stage. It takes Kubernetes 0.94 seconds
to deploy the single container and 19.2 seconds for the 100 con-
tainers, a 20x difference. Most interestingly, it takes Kubernetes 2.5
seconds to deploy the first of the 100 containers. These differences
indicate a limitation in Kubernetes” workload deployment pipeline
to process workload requests in parallel. Columbo shows the origin
of the limitation to be kubectl in stage 1, which takes up as much as
90% of deployment time for the last deployed container (Figure 6).
Columbo finds the CPU of the control plane, where kubectl is exe-
cuted, to be fully utilized during the stage 1 execution (Figure 7).
Hence, Columbo concludes that kubectl is resource-constrained
and, therefore, slows down stage 1. We demonstrate in Section 6.5
how Columbo optimizes such a performance bottleneck.

Finding 1: Kubernetes takes almost one second to deploy a single
container, which is 8.5x slower than containerd (Figure 1).
Finding 2: Containers deploy significantly slower in parallel, with
the fastest deployed container of a 100-container workload being
2.6x slower than a single-container workload.

Finding 3: Kubectl uses significant CPU resources to translate
and submit container descriptions, which could cause a resource
bottleneck and slow down container deployment.
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a workload of 1600 containers across 16 nodes. Columbo
analyzes the deployment in three iterations, finding and re-
solving bottlenecks in specific pipeline stages through con-
figuration updates. The total deployment time reduces from
80.9 seconds (run 1) to 16.9 seconds (run 3), converging to a
predicted best-case time of 11.9 seconds (baseline).

6.3 Day-to-day Columbo Use Case

To answer Q2, we demonstrate how Columbo deploys 1600 contain-
ers over 16 nodes and improves Kubernetes’ default configuration
in three iterations to reduce deployment time by 79.1%. We plot
Columbo’s measured relative deployment time per pipeline step in
Figure 8 as Columbo Run 1, with the sum of all steps being 100%.

Columbo uses the analytical model to predict the best-case de-
ployment time for this workload. It deploys a single container from
the workload and measures the time spent in each pipeline step.
This information and the workload specification are fed into the
analytical model, resulting in a best-case deployment prediction
(Section 4.8). We show this prediction as Baseline in Figure 8.

Columbo selects the pipeline step with the most discrepancy in
execution time between the real-world execution (Columbo Run
1) and the analytical prediction (Baseline) as primary bottleneck.
In Figure 8, this is the step that creates pod objects (Tcpo), with a
predicted execution time share of 1%, to an empirical share of 97%.
The workload requires 1600 pod objects to be created. Columbo
finds the parameter rule of the SlowStartInitialBatchSize configu-
ration parameter to map to the Tcpo step and violate the required
parallelism of 1600, with a default value of 1. Therefore, Columbo
recommends the user to change this parameter to 1600, with a
predicted deployment time reduction of 96%.

The user applies the parameter update and runs Columbo for
a second iteration. Columbo benchmarks the workload with the
new configuration, which we show as Columbo Run 2 in Figure 8.
Deployment time decreases from 80.9 seconds in the first iteration
to 31.1 in the second, and the primary bottleneck in T;p, reduces
from 97% of execution time to 6%, showing the effectiveness of
Columbo’s parameter tuning. Columbo identifies a new bottleneck
and violating parameter rule, similar to the first iteration, which
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container

reduces deployment time to 16.9 seconds (Columbo Run 3), a 79.1%
decrease compared to the original configuration. While this deploy-
ment is still 42% above the predicted best-case performance of 11.9
seconds, it will be difficult in practice to improve the performance
further. Columbo measures a CPU utilization of up to 100% in the
control plane and up to 90% in the worker nodes. Given this high
utilization, there is little more performance to be gained, so the
user decides to stop tuning with Columbo. We ascribe the differ-
ence between the actual and predicted performance to the model’s
multi-core scheduling algorithm. It assumes that each pipeline step
execution uses one CPU core. However, in practice, many steps
use more resources. As a result, the actual execution is sooner
limited by CPU resources rather than configuration parameters,
leading to reduced performance. A more fine-grained scheduling
algorithm would change the predicted resource use per pipeline
stage and hence change the predicted performance per stage under
resource constraints. However, we find that bottlenecks typically
dominate deployment time (e.g., up to 96% in Figure 8) so we do not
expect a more detailed scheduling algorithm to change Columbo’s
bottleneck detection.

6.4 Deployment Methods

To investigate how a workload’s structure affects deployment time
(Q2), we compare four deployment patterns. Each pattern deploys
100 containers and wraps them differently in pods and jobs. These
patterns are: per-call, invoke kubect]l 100 times, with 1 job per
invocation; per-job, deploy 100 jobs through a single kubectl call;
per-pod, deploy 100 pods in a single job; and per-container, deploy
100 containers in a single pod. We present our results in Figure 9.

Columbo shows that the per-call method is, on average 47%
slower in deploying all 100 containers than the other deployment
methods. This deployment, as well as the per-job deployment, seem
to be slowed down due to a lack of CPU resources in phase 1, as
discussed in finding 3. However, Columbo attributes this bottleneck
to a limited job submission rate between kubectl and the API server,
which it resolves via a configuration update (Figure 10). Despite
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the high CPU utilization, both deployments see a sharp reduction
in time spent in stage 1 of the deployment pipeline, and the per-call
deployment even sees a 37% reduction in total deployment time.
The per-container and per-pod methods have the lowest deploy-
ment times of around 13 seconds and spend the deployment time
primarily on the worker nodes. The per-container method sees
a decrease in deployment time of 16% but is still bottlenecked in
the container creation phase. This deployment’s 100 containers are
created in sequence, which is the intended behavior for containers
in the same pod and cannot be changed. The per-job method sees
no change in deployment time as it is always constrained by CPU
resources on the worker node.
Finding 4: Workloads with fewer jobs and more containers per job
decrease kubectl’s CPU usage, and potentially deployment time.
Finding 5: Pods are expensive to create. However, grouping con-
tainers in a pod is more expensive as these are created sequentially.

6.5 Multi-node Deployments

To answer Q4, we examine how deployment time scales with work-
loads distributed across worker nodes. We study weak scalability,
where Columbo deploys 100 containers per node for up to 1600
containers on 16 nodes (Figure 11), and strong scalability, where
Columbo deploys 100 containers across up to 16 nodes (Figure 13).
Columbo uses the per-pod deployment method.

With weak scalability, the load on the control plane increases
as there are more containers to process, but the load on worker
nodes remains constant as each always deploys 100 containers. As a
result, Columbo shows that stage 2 on the control plane is a primary
bottleneck and increases deployment time from 12.9 seconds with 1
worker to 80.9 seconds with 16 workers, or a 6.3x increase. Columbo
finds this bottleneck to be because of configuration limitations
rather than resource limitations, and reduces deployment time to
16.9 seconds with 16 nodes, a 79.1% decrease (Figure 12).

With strong scalability (Figure 13), the load on the control plane
remains constant as it always processes 100 containers. In contrast,
the load on the worker nodes decreases as each deploys fewer con-
tainers. As a result, workload deployment time will stop decreasing
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when using more than 4 workers as the load on the workers is
already negligible. Columbo reduces the control plane deployment
time via several configuration updates (Figure 14). As a result, de-
ployment time decreases from 5.5 seconds to 2.5 seconds with 16
workers, while performance still stagnates from 4 workers on.
Finding 6: Deploying containers across more worker nodes de-
creases deployment time. There is a limit, however, as larger work-
loads increase the pressure on the control plane.

Finding 7: Columbo achieves an average decrease in deployment
time of 27.6% across its benchmark suite of 14 microbenchmarks
compared to the default configuration. It resolves configuration-
induced bottlenecks and makes the CPU the new limiting factor.

6.6 Kubernetes Versions

To answer Q5, Columbo deploys the same 100 container workload
in Kubernetes versions 1.26 (Figure 15) and 1.27 (Figure 6) to inves-
tigate performance differences. Although Kubernetes is an evolving
platform, its high-level architecture has remained stable, allowing
Columbo to seamlessly work across Kubernetes versions. Columbo
finds that version 1.26 deploys all containers in 26.5 seconds, a 1.4x
increase compared to the 19.2 seconds of version 1.27. Furthermore,
the first deployed container in version 1.27 takes 2.6 seconds com-
pared to 4.6 seconds for version 1.26, a 1.8x increase. The primary
bottleneck is identified in the pod deployment stage 5. We discover
a difference in default values between the Kubernetes versions for
several configuration parameters related to stage 5, including a 10-
fold difference in the number of read and write requests a kubelet
may submit to the API server per second, to be the root cause of the
performance difference. These parameters slow down pod creation
at different rates. Columbo resolves the bottleneck in both versions,
resulting in a similar (less than 5% difference in deployment time)
optimized performance between the versions, which is visualized
in Figure 10 for the call method in Kubernetes 1.27.

Finding 8: Kubernetes versions vary in default configurations,
which can result in a 77% increased workload deployment time
for version 1.26 compared to 1.27. Columbo’s recommendations
protect users against such variations.
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Kubernetes and execute TPC-DS queries q1, q16, 94, and q95,
using the default and Columbo-optimized configurations.

7 End-to-end Impact of Columbo

We evaluate the performance impact of Columbo on a data analytics
application from the TPC-DS [26] benchmark using Apache Spark
and a serverless workflow on OpenWhisk. Both use Kubernetes.

7.1 TPC-DS on Spark

Apache Spark is a data processing systems that process data on
workers through user queries. Spark can deploy these workers
through resource managers such as Kubernetes. Columbo deploys
Spark on Kubernetes and measures the time it takes to deploy the
workers and its impact on end-to-end application performance
when switching between Kubernetes’s default and Columbo’s opti-
mized configuration.
Setup: Columbo deploys Kubernetes on 15 e2-standard-32 virtual
machines from Google Cloud with 32 CPU cores and 128GB RAM.
Two machines run the Kubernetes and Spark control planes, and
the remaining 13 function as workers. We configure Spark to deploy
400 workers across the 13 worker nodes, each using 1 CPU core
and 3GB RAM. We use Spark 3.4.1 with the Kubernetes Pod API to
start workers. For the workload, we use a 100GB TPC-DS dataset
stored on Google Cloud Storage. Out of the 100 queries that the
TPC-DS benchmark offers, we use queries 1, 16, 94, and 95, as these
represent different compute and network characteristics [27].
Evaluation: Columbo executes one query from the TPC-DS bench-
mark at a time, restarting all 400 workers for each (cold start). We
show the total execution time for each query in Figure 16. The total
execution time consists of three parts: First, Spark prepares to de-
ploy the user workload and requests Kubernetes to create workers.
Second, Kubernetes creates the Spark workers as pods (marked as
Kubernetes Deployment in Figure 16). The figure also shows the
distribution of pod deployment times. Third, a worker executes the
query as soon as it is deployed by Kubernetes.

We observe that the median worker deployment time on Ku-
bernetes decreases from 14.5 seconds using Kubernetes’ default
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Figure 17: Execution time of serverless functions across dif-
ferent function chain lengths and concurrent executions.

configuration to 10.3 seconds after applying Columbo. This av-
erage decrease of 29% aligns with the 28% decrease found across
Columbo’s microbenchmarks (finding 7), showing the generaliz-
ability of Columbo’s recommendations. The reduced deployment
time translates into a 17% lower total execution time on average.

7.2 Serverless Workflows on OpenWhisk

Serverless platforms such as OpenWhisk [2] and Knative [15] de-
ploy serverless functions using Kubernetes. Serverless workflows
are complex applications that chain serverless functions so the re-
sults of one function are passed to the next. Many scientific [3] and
business [24] applications are structured as serverless workflows.
Columbo deploys a serverless microbenchmark using OpenWhisk
on Kubernetes. OpenWhisk starts workers using Kubernetes before
executing functions on the workers.

Setup: Columbo deploys Kubernetes on 10 e2-standard-8 virtual
machines from Google Cloud with 8 CPU cores and 32GB RAM.
One machine runs the Kubernetes control plane, another the Open-
Whisk control plane, and the remaining 8 function as workers. The
microbenchmark sends a JSON object through a chain of 1 to 4 func-
tions. Each chain is evaluated with 8 to 64 concurrent invocations.
This microbenchmark is representative of common function depths
found in chained workloads [3, 20], and is similar to serverless-
bench [33]. We measure the cold-start performance as warm-starts
do not interact with the Kubernetes control plane.

Evaluation: In Figure 17, we observe that optimizing Kubernetes’
configuration has minimal impact at lower concurrency levels.
At higher concurrency levels (32-64) and low chain lengths (1-2),
Columbo-optimized configurations improve performance by 10-13%
as the number of deployed OpenWhisk workers exceeds the default
concurrency of several Kubernetes pipeline stages. Therefore, as
expected, Columbo improves deployment performance further by
up to 20% at even higher concurrency levels and chain lengths.
Optimizing the Kubernetes configuration has no significant impact
on performance variability.

Finding 9: Columbo’s optimization strategy also applies to sys-
tems that rely on Kubernetes to manage resources, achieving an
average workload deployment time reduction of 29% for Spark on
Kubernetes.

Finding 10: Columbo’s optimization of workload deployment time
lowers total execution time for highly parallel applications on Spark
by 17% on average and for deep serverless function chains on Open-
Whisk by up to 20%.
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8 Related Work

Many works focus on Kubernetes to study, benchmark, and ana-
lyze its performance and components. Chiba et al. present Con-
fAdvisor, a tool for tuning container-specific configurations for
Kubernetes [4]. However, the container runtime is one of many
components in Kubernetes’ architecture, so optimizing it has lim-
ited impact [6]. Truyen et al. analyze the differences in Kubernetes’
configuration between managed Kubernetes services [29]. Medel et
al. model the lifecycle of a pod and build a tool for detecting perfor-
mance bottlenecks in Kubernetes clusters [11]. Khan et al. integrate
performance models into a simulator, allowing them to quickly
iterate between Kubernetes configurations [14]. However, these
models operate with higher granularity than Columbo, making it
challenging to identify the root cause of discovered bottlenecks.
Geldenhuys et al. optimize configurations of distributed stream pro-
cessing platforms such as Apache Flink [10], which can be deployed
on Kubernetes and be used on top of Columbo.

Closest to our approach are Self Tune, BestConfig, and SmartConf.
Self Tune [13] leverages the iterative operation of cluster managers,
such as Kubernetes, to update parameters. BestConfig [34] uses
a divide-and-conquer method for configuration-space sampling,
with broad coverage (bounded by resource utilization) to explore
an optimal configuration for systems (not just cluster manager).
SmartConf [32] proposes a control-theoretic approach to navigate
toward user-defined performance goals using dynamic configura-
tion adjustments. Compared to these approaches, Columbo does
not require users to define relevant parameters, their bounds, and
reward functions, provides finer-grained bottleneck analysis (Ku-
bernetes stages), identifies relevant configuration parameters with
each run (rule-based), and recommends parameter updates to opti-
mize workload deployment time.

Beyond the work described here, there is a large body of work
around distributed performance anomaly detection, resource utiliza-
tion analysis, and (failure/bottleneck) root cause analysis [21, 25].
However, these works focus on general modeling and performance,
bottleneck, and failure analysis, without attributing the cause to
a configuration option as Columbo does. More broadly, there is a
class of work that targets scaling and optimizations of various dis-
tributed workloads and services [23, 28]. We consider these efforts
orthogonal to ours, which aim to extract the maximum performance
from configuration change only.

9 Conclusion

In this paper, we introduced Columbo, a reasoning framework to op-
timize application deployment time in Kubernetes through configu-
ration updates. We proposed a highly automated and detailed model-
based and rule-driven performance reasoning framework that can
be used with a benchmark suite to detect and resolve performance
bottlenecked stages in Kubernetes’ workload deployment pipeline.
Columbo finds performance bottlenecks across the entire pipeline
because of Kubernetes’ default configuration and achieves an av-
erage decrease in deployment time of 28% across 14 microbench-
marks. Moreover, it achieves a 17% reduction in total execution
time for data processing with Apache Spark and a 20% reduction
for serverless workflows with OpenWhisk. Columbo is available at
https://github.com/atlarge-research/continuum/tree/columbo.
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