
Survey of Serverless Workflows

Debarghya Saha
Vrije Universiteit Amsterdam

Sacheendra Talluri
Vrije Universiteit Amsterdam

Matthijs Jansen
Vrije Universiteit Amsterdam

Animesh Trivedi
Vrije Universiteit Amsterdam

Abstract
Serverless computing is a popular paradigm for deploy-
ing applications due to the ease of deployment and fine-
grained billing offered by serverless platforms like AWS
Lambda, Azure Functions and Google Cloud Functions.
However, they also have limitations such as an increased
latency in execution, limited memory and lack of support
for specialized hardware like GPUs. Due to these limi-
tations certain types of applications cannot benefit from
the aforementioned perks of serverless architecture, for in-
stance, interactive microservices with strict latency targets,
memory and compute intensive workloads like training
machine learning models, and scientific workloads that
have complex task dependencies. Many workflows have
been proposed in existing literature that extend the func-
tionality of existing serverless platforms and allow them
to support a wider range of applications. In this literature
study we take a look at these workflows, taxonomize the
state-of-the-art workflows and analyse current trends in
serverless workflow research as well as put forward areas
for future research in serverless workflows.

1 Introduction

The paradigm of serverless computing has emerged as a trans-
formative force in the field of cloud computing. It is a cloud
computing model that abstracts away the traditional infrastruc-
ture management, such as servers and virtual machines, from
developers and delegates it to the serverless service providers.
In a serverless architecture, developers focus solely on writing
code in the form of functions which are event-driven and can
be executed in response to specific events or triggers. For com-
plex serverless applications a large number of functions are in-
voked, for example, Xtract [42] is a serverless application for
processing vast collections of scientific files and automatically
extracting metadata from diverse file types. These collections,
or data lakes, like DataOne [30] have hundreds of thousands
of files and Xtract needs to invoke multiple functions per file

as well as different functions depending on specific file types.
On top of this, it interacts with AWS Relational Database
Service to manage state. Managing these complex processes
efficiently becomes challenging, and so to facilitate the coor-
dination and composition among functions, cloud providers
have rolled out serverless workflow services. AWS offers
AWS Step Functions, Azure offers Azure Durable Functions
and Google Cloud offers Google Cloud Workflows to manage
serverless workflows in their respective platforms enabling
developers to only specify the execution logic among func-
tions, without having to deal with complex and error-prone
communication and interactions among functions.

While there has been much effort in surveying literature in
serverless computing, for example Hellerstein et al. [16] sur-
veyed the challenges and shortcomings of serverless and Eis-
mann et al. [10] surveyed the use cases of serverless, further
discussed in Section 2, there has been little work in surveying
serverless workflows. Workflows make it easier for the devel-
oper to achieve specific functionalities by stringing together
smaller tasks and are widely used in other areas of computer
science such as scientific workflows [21, 28], multi-tier web
service workflows [29], and big data processing workflows
such as MapReduce [8] and Dryad [17].

Combining workflows with serverless makes it easier for
developers to use serverless for building applications that
weren’t originally intended to be serverless, like stateful ap-
plications and data-intensive applications, while reaping the
benefits of serverless such as scale to zero and freedom from
provisioning and maintaining servers.

We therefore believe that surveying and developing the
field of serverless workflows is important and so the goal
of this literature survey is to taxonomize the state-of-the-art
serverless workflows by the type of application they support,
as well as to look at current and future areas of research in
serverless workflows. The method used for conducting this
literature survey is detailed in Section 3.

With this survey, we aim to answer the following questions:

RQ1: Which types of applications benefit from the state-of-the-
art serverless workflows?

Answering this will enable us to construct a taxonomy
of the serverless workflows grouped by type of appli-
cation and give us information about which types of
applications can benefit from using state-of-the-art work-
flows1 when they get no benefits from using traditional
workflows.

RQ2: What are the current areas of research for different do-
mains in serverless workflows?
Answering this will provide insights on the trend of re-
search in serverless workflows, as well as help gauge the
interest different application domains have in serverless
computing.

RQ3: What are the potential areas for future research in server-
less workflows?
This will aid us in finding out research areas in server-
less workflows that are of interest but do not have much
research activity.

In line with the research questions defined, the main contribu-
tions of this literature survey are:

C1: Constructing a taxonomy of state-of-the-art serverless
workflows by the type of application (Section 4, 5).

C2: Finding out current areas of research in serverless work-
flows by analysing co-occurrence of keywords in publi-
cations related to serverless workflows (Section 6).

C3: Exploring areas for research in serverless workflows by
performing a trend analysis of keywords in publications
related to serverless workflows (Section 7).

2 Related Work

Previous surveys in the field of serverless computing have fo-
cused on documenting the challenges and problems of server-
less computing, surveying use-cases, or comparing the perfor-
mance and offerings of various serverless providers. These
are briefly outlined below.

Baldini et al. [4] compare commercial serverless platforms
of AWS, Microsoft Azure and IBM OpenWhisk as well as
open source serverless platforms like OpenLambda, on factors
of cost, performance, programming model and supported pro-
gramming language. They also discuss use cases of serverless
computing, giving an idea of when the serverless approach is a
good fit and when should it be avoided. Lastly, they document
the challenges faced by serverless computing.

Hellerstein et al. [16] document the challenges and short-
comings of serverless computing, mainly focusing on AWS
Lambda. They provide three case studies where they com-
pare the same workloads of model training, ML prediction
and distributed computing on Lambdas and EC2 instances to
illustrate the performance difference between serverless and
traditional VM based approaches.

1Throughout this survey ’state-of-the-art workflow’ is used to refer to the
workflows proposed in literature and ’traditional workflow’ is used to refer
to the workflows used in practice, for example by commercial serverless
platforms like AWS.

Shahrad et al. [39] characterize and document the entire
production workload of Azure functions between July 15th
and July 28th, 2019 by trigger types, invocation frequencies
and patterns, and resource needs. This provides valuable in-
sight into the type of workloads a major serverless provider
has to deal with, which can aid researchers in making in-
formed decisions about resource allocation, scheduling and
cold start mitigation strategies.

Serverless platforms often keep the developers in the dark
regarding the underlying hardware that their functions execute
on, developers can only configure the amount of RAM of
the instance that the function will execute on. Kelly et al.
[23] shed some light on the inner workings of AWS Lambda,
Google Cloud Functions, Azure Functions and IBM Cloud
Functions by identifying the hardware specifications of VMs,
measuring function performance with respect to the amount
of memory allocated to the function, measuring cold start
latencies and amount of cold starts, measuring I/O throughput,
and effect of interference on function performance due to
large number of users using the platform at a time. It is useful
information that is not otherwise available for developers and
researchers in choosing serverless platforms.

Kuhlenkamp et al. [27] survey some common assumptions
that are associated with serverless computing and contrast
them with the reality, for instance it is a common assumption
that with serverless computing, functions scale automatically
and developers don’t have to worry about scaling, however
the authors find that while serverless provides autoscaling, the
developers have to be careful about the standard provisioning
and de-provisioning time of the serverless platform according
to their application’s needs. They present some challenges
that arise from these common assumptions and provide some
mitigation strategies for said challenges.

Wen et al. [46] taxonomize the challenges faced by server-
less application developers and survey the trend and difficulty
of questions about serverless application development on
StackOverflow. This offers practical insights and actionable
implications for developers, researchers, and cloud providers
and emphasizes best practices and explores intriguing re-
search opportunities in the adoption of serverless computing.

Wen et al. [47] also compare the workflow services of AWS
Step Functions, Azure Durable Functions, Alibaba Serverless
Workflow using dimensions like orchestration, data payload
limit and parallelism support, and evaluate performance of
these workflows by running identical workloads.

Shafiei et al. [38] survey serverless applications in literature
and document the challenges faced by those applications as
well as the benefits those applications got from moving to
a serverless architecture. This survey offers insight into the
main benefits of serverless computing that matter for different
domains of applications.

Eismann et al. [10] proposed a systematic process to iden-
tify, collect, and characterize serverless use cases. They review
89 use cases of serverless computing from white and grey

2

literature and open source projects to perform an in-depth
characterisation of them, using 24 metrics such as execution
pattern, workflow coordination, use of external services, and
motivation for adopting serverless. This study provides not
only a high level look at serverless applications such as the
serverless platform used and the application type, but also low
level insights such as the number of functions invoked, type
of triggers used and resource usage of these applications.

In contrast to the previous surveys, our work documents
the serverless workflows that can be used to overcome the
challenges faced by serverless computing that prevent it from
being used in a wide variety of applications such as applica-
tions with strict latency targets or applications that need to
communicate large amounts of data. It also offers insight into
interesting areas of focus for future research.

3 Method of Literature Review

For this survey, three approaches were considered - unguided
exploration of the material, snowballing [48] and the Sys-
tematic Literature Review (SLR) [22]. Unguided exploration
involves the straightforward process of extensively reading
materials on a given topic, using standard scientific litera-
ture repositories and search tools like Google Scholar. The
"unguided" aspect of this method arises from the absence
of predefined stop and search criteria. SLR defines guide-
lines for conducting a review, these guidelines are: outlining
the research question(s), establishing a predetermined search
strategy, and specifying inclusion and exclusion criteria in
advance, which help to eliminate bias in selection of literature
as these steps are carried out before actually going through
the literature. For this literature review we use SLR as it elim-
inates the inherent bias introduced by unguided traversal, and
supplement it with snowballing. The survey was conducted in
three phases as defined in the guidelines for SLR by Kitchen-
ham et al. [22] - planning, conducting and reporting, which are
detailed in the proceeding sections and illustrated in Figure 1.

3.1 Planning
In this step, we analysed some initial literature on serverless
computing using broad keywords like "serverless comput-
ing" and "serverless application". The goal of this step is
to identify the need for a literature review. Going through
the initial literature we identified several shortcomings of
the serverless architecture and current serverless offerings,
like cold starts and limited execution times, among others,
and then used these to identify literature that proposed work-
flows to minimize or overcome these shortcomings. There are
many literature surveys highlighting the challenges of server-
less computing and applications that do not benefit from a
serverless architecture due to them, as mentioned in section 2,
however we did not find any surveys that covered the research

Identify the need for a survey
by going through prior surveys and identifying gaps

Define Research Questions
We defined three research questions to fill the identified gaps

Form keywords and queries
to search through AIP and Google Scholar

Define inclusion and exclusion criteria
to obtain literature relevant to this study

Survey selected literature
to answer the pre-defined research questions

Report Findings

Planning

Conducting

Reporting

Figure 1: Steps followed for conducting this study.

in serverless workflows and the applications that benefit from
these workflows. To fill this gap, the goal of this literature sur-
vey is to document the state-of-the-art in serverless workflows
and construct a taxonomy of serverless workflows based on
the type of application enabled by the workflow. In line with
this goal, we formulated three research questions that this
survey aims to answer as mentioned earlier in Section 1.

3.2 Conducting

This step involves the selection of relevant literature for this
survey, including forming search queries and defining the
inclusion and exclusion criteria for selection.

To obtain a selection of relevant literature for this sur-
vey, Article Information Parser (AIP) 2 and Google Scholar
are used. AIP is a tool developed by AtLarge Research that
combines publications from DBLP3, AMiner4 and Semantic
Scholar5 and provides a user-friendly way to query and filter
relevant publications from this large database. The following
query was used to obtain relevant publications from AIP:

2AIP: https://github.com/atlarge-research/AIP
3DBLP: https://dblp.org/
4AMiner: https://www.aminer.org/
5Semantic Scholar: https://www.semanticscholar.org/

3

https://github.com/atlarge-research/AIP
https://dblp.org/
https://www.aminer.org/
https://www.semanticscholar.org/

Figure 2: Percentage of papers from 2014-2022 having ’work-
flow’ somewhere in the text among papers that have ’server-
less’ in the keywords. This is by no means an exhaustive
analysis, but is helpful to get a general idea of the amount of
papers in serverless that mention workflows.

SELECT * FROM publications
WHERE year >= 2014
AND (title ~* ’serverless workflow’
OR abstract ~* ’serverless workflow’);

However, at the time of writing, the latest update to the AIP
database was till February 2023. To fill this gap, Google
Scholar was also used to supplement the search by using
the following queries:
Q1: Serverless Computing. This gave us publications deal-

ing with all aspects of serverless computing, as expected,
and was useful to get publications that allowed us to get
a general idea of the areas of research in serverless com-
puting. However, using this query, not many publications
dealing with serverless workflows in specific could be
obtained. Performing a quick keyword analysis via Con-
stellate6 revealed that only around 35% of publications
that had ’serverless’ in their keyword also had the term
’workflow’ somewhere in the text, as shown in Figure 2.

Q2: Serverless Workflow. This query narrowed our search
space to publications specifically mentioning the term
’serverless workflow’.

Q3: "serverless", "workflow". There might be publications
that do not mention the conjugated term ’serverless
workflow’ but instead just mention ’workflow’, however
searching for just workflow will result in a broad search
space that deviates from serverless. So, this query was
formulated to search for publications having the words
’serverless’ and ’workflow’ separately.

Q4: "serverless", "workflow","survey". Lastly, we wanted
6https://constellate.org/builder/

Method #
Search queries 132
After filtering for relevant material 51
After filtering by analysing content 11
Snowballing 4
Total Selected 15

Table 1: Number of papers selected.

to obtain prior literature surveys in serverless workflows
as well, so we used this query.

After obtaining the queries, we set our inclusion and exclu-
sion criteria to pick out relevant literature pertaining to this
survey from the search results. The inclusion and exclusion
criteria for selection was set as follows:
I1: include papers that propose workflows for specific

types of applications. According to the goal of this
survey to taxonomize serverless workflows by type of
application, as motivated in Section 3.1, an inclusion
criteria was set to include papers that propose workflows
for specific types of applications.

I2: include papers that improve on existing workflows.
There may be papers that improve on existing workflows
to extend them to different types of applications or re-
fine them to better support specific types of applications.
Such papers were included.

I3: include only papers that focus on workflows in server-
less. Papers that do not focus on serverless workflows
and instead focus on other areas of serverless comput-
ing, or workflows in non-serverless architectures, are
excluded as we are interested in serverless workflows
for this study.

E1: exclude papers that focus on evaluating performance
of existing workflows. Some papers focus on evaluating
performance and comparing traditional workflows, we
exclude these papers as we are only interested in state-
of-the-art workflows.

E2: exclude papers that document implementation of ap-
plications using existing workflows. Some papers doc-
ument the process of implementing applications using
existing workflows, we exclude these as we are not in-
terested in implementation specific literature.

Using these criteria 15 papers were selected, the details of
the selection are shown in Table 1. These papers are discussed
in detail in the following section and form the basis for the
taxonomy constructed later in Section 5, however research
and findings from other papers are also used to complement
and contrast the design choices in these 15 papers.

Our search is confined to scientific literature, omitting any
commercial applications lacking publicly available methods.
Additionally, our search is limited to English literature, poten-
tially overlooking publications not widely recognized within
the English-speaking scientific community.

4

https://constellate.org/builder/

State-of-the-art
Serverless Workflows

Workflows for Code-
Data Locality

GPU-enabled
Workflows Scientific Workflows Cloud Continuum

Workflows Stateful Workflows Machine Learning
Workflows

Latency-sensitive
Workflows

Figure 3: Taxonomy of workflows discussed in this paper.

4 State-of-the-art Serverless Workflows

This section focuses on workflows and their design decisions
that improve specific shortcomings of the current serverless
platforms, thereby allowing a wider array of applications and
domains to use the serverless model. A short overview of all
the workflows in this section can be found in Table 2. Figure
3 shows the taxonomy of the workflows that are discussed in
this paper.

4.1 Workflows Focusing on Code-Data Local-
ity

Traditionally, in serverless platforms the data required by
the functions could be located at a different node than the
one where the function executes. Because functions are a
black box and there is no way for the serverless platform to
know what data is read or written by a function beforehand,
this increases latency as well as cost due to the fact that
first the data has to be shipped to the code that requires it,
and other cloud services (like Amazon S3) are required to
mediate the data which is charged per GET/PUT request.
Below are outlined some papers that focus on improving the
code-data locality of serverless workflows in order to improve
performance and reduce the time that is spent waiting on data.

Tang et al. [44] propose ’Lambdata’, a serverless comput-
ing architecture that focuses on data caching and code-data
locality. They argue that for the vast majority of serverless
workloads, the input and output data can be determined be-
fore run time, so they introduce the concept of ’data intents’.
For example, if we have a function that takes in images and
compresses them to make thumbnails, then the input can
look something like ’pic/1.jpg’ and the corresponding output
would be ’thumb/1.jpg’, where ’pic/’ and ’thumb/’ are two
different buckets in the data store. Data intents is a way for
the developers to tell the scheduler what data is read and writ-
ten by functions, and using this knowledge the scheduler can
perform caching of the data on invokers and also co-locate
multiple invokers if they operate on the same data. This leads
to speed-ups in function execution and reduction in cloud stor-
age calls (as the data is cached locally on the invokers), which
both translate into cost reduction. An important aspect of data
intents is that they affect performance and not correctness, so

it is not critical for a developer to provide data intents for the
functions to run correctly. In their evaluation the authors find
that there is no statistically significant difference in function
invocation times if data is not in the cache, however if the data
is cached Lambdata gets an average speed-up of 1.50x. In
terms of workflow performance, Lambdata achieves a 2.16x
speed-up to finish the workflow compared to OpenWhisk.

The main design decision for Lambdata is the use of
data-aware scheduling. Traditionally serverless platforms
use a time-series based prediction approach to pick warm con-
tainers for function invocations, this approach fails to account
for data locality. The advantage of data-aware scheduling is
that the scheduler is aware of the data needed by the functions
and therefore can schedule the functions close to the data
as well as cache the data if multiple functions need it. How-
ever, the drawback of this is that it increases the overhead for
scheduling and offers no benefit if the workload is not heavily
data reliant, such as embarrassingly parallel workloads where
each task is independent.

fn fn... fn fn...

send
objects

trigger
functions

source functions target functionsdata
bucket

Figure 4: The basic idea behind Pheromone, letting the data
drive function invocations.

Yu et al. [50] believe that function orchestration in server-
less platforms is not efficient as it connects functions accord-
ing to their invocation dependency. It specifies the order of
function invocations but is oblivious to when and how data
are exchanged between them. Without this, the serverless plat-
form assumes that the output of a function is entirely and
immediately consumed by the next function, which is not
always correct, like processing dynamically accumulated data
in stream analytics. They argue that function orchestration
should instead follow the flow of data, where the idea is to let
data consumption trigger functions and drive the workflow.
To this end, they develop Pheromone, a scalable serverless
platform with low-latency data-centric function orchestration.
Figure 4 shows the basic idea behind pheromone.

5

Workflow Area of focus Implemented on top of Supported Languages
Lambdata [44] Code-data locality OpenWhisk All languages supported by

OpenWhisk
Pheromone [50] Code-data locality Cloudburst C++
GPU sharing [36] GPU enabled workflows KNIX (formerly called

SAND)
Python, Java

GPU multimedia processing
[33]

GPU enabled workflows AWS Lambda All languages supported by
AWS Lambda

SWEEP [20] Scientific Workflows AWS Lambda All languages supported by
AWS Lambda

DayDream [35] Scientific Workflows AWS Lambda, but can be
ported to any serverless plat-
form

All languages supported the
serverless platform it is im-
plemented on

Serverless in the cloud con-
tinuum [34]

Cloud Continuum SCAR and OSCAR, which
themselves run on AWS
Lambda and OpenFaaS re-
spectively

Any language that supports a
command line

OpenWolf [41] Cloud Continuum OpenFaaS All languages supported by
OpenFaaS

Beldi [51] Stateful Workflows AWS Lambda All languages supported by
AWS Lambda

FAASM [40] Stateful Workflows KNative All languages that can be
compiled to WebAssembly

Cirrus [6] ML Workflows AWS Lambda All languages supported by
AWS Lambda

FedLess [12] ML Workflows AWS Lambda, Azure Func-
tions, Google Cloud Func-
tions, IBM Cloud Functions,
OpenWhisk, OpenFaaS

Python

Nightcore [19] Latency sensitive applica-
tions

it is a serverless platform
itself, not implemented on
top of any existing serverless
platforms

C/C++, Go, Node.js, Python

Faastlane [26] Latency sensitive applica-
tions

OpenWhisk All languages supported by
OpenWhisk

Table 2: Workflows discussed in this paper, along with their area of focus, the serverless platform they are implemented on, and
the languages supported by them.

Pheromone uses a data-centric approach to function
orchestration, where the flow of data triggers function
invocations. Traditionally serverless platforms specify the
order of function invocations but are oblivious to when and
how data are exchanged between functions, which limits the
expressiveness of function invocations because it assumes
that the data flows the same way as functions are invoked
and that the function passes its entire output to subsequent
functions, which may not be true for example in a batched
stream analytics workload where functions are not immedi-
ately triggered as the data arrives but instead have to wait for
a set amount of time before invocation.

Also, Pheromone makes use of two-tier distributed
scheduling involving a local and a global scheduler. A work-

flow request first arrives at a global coordinator, which routes
the request to a local scheduler on a worker node. The local
scheduler invokes subsequent functions to locally execute
the workflow whenever possible, thus reducing the invoca-
tion latency and incurring no network overhead. Traditionally
serverless platforms, like OpenWhisk, use a centralized sched-
uler, which has a low overhead and results in better resource
utilisation as the scheduler has a view of the entire cluster,
however it does not account for data locality.

Functions exchange data within a node through a zero-
copy shared-memory object store, and they can also pass
data to a remote function through direct data transfer, resulting
in lower latency compared to cloud storage, which is used
traditionally in serverless computing. The benefits of these

6

design choices are reflected in the experimental results where
Pheromone is compared with KNIX (formerly called SAND
[2]), Cloudburst, AWS Step Functions and Azure Durable
Functions and outperforms them by orders of magnitude in
function invocation latency and throughput.

4.2 GPU Enabled Serverless Workflows
With the current offerings of serverless providers like Azure,
AWS and Google Cloud, it is not possible to use a GPU for
compute. However, compute intensive workloads like training
ML models or running physics simulations benefit greatly
by running their computations on a GPU instead of a CPU.
For such applications, serverless offers no benefit due to the
unavailability of GPU compute. The workflows discussed in
this section attempt to fix this shortcoming and allow use of
GPUs to run serverless functions.

Kim et al. [24] used NVIDIA-Docker, which is a tool that
allows building and running docker images using NVIDIA
GPUs, to enable GPU compute in IronFunctions which is a
serverless service offered by iron.io. Their approach however
tied an entire physical GPU to one function instance, which is
not very different from the serverful approach, but at a smaller
scale. This leads to resource wastage and inhibits parallelism.

Satzke et al. [36] improve on this by proposing a server-
less framework allowing users to execute their applications
in the form of workflows in the cloud, using heterogeneous
and shared CPU and GPU cluster resources. Users can re-
quest execution of parts of their applications to be executed
on GPUs, and additionally can have fine-grained control of
the amount of GPU core and memory to be used for each
function as part of the workflow. The authors implement this
framework on top of KNIX which uses Kubernetes, and so
one of the goals was that it should not be required to modify
any Kubernetes code or container images for GPU sharing.
An application executed with shared vGPUs should behave
as if it was executed on physical GPUs.

To partition the GPU into several vGPUs for use in mul-
tiple containers, the GPU manager framework7 is used. It
supports GPU usage isolation on kernel execution, enabling
Kubernetes to not only run more than one pod on the same
GPU, but also gives service guarantees to each Pod. It allows
configuring and limiting both GPU and memory shares for
each pod to be deployed on the cluster. However, GPU Man-
ager only works with Nvidia GPUs and Kubernetes. Some
alternative approaches for sharing GPUs in containerized ap-
plications are KubeShare [49] and GaiaGPU [14].

The authors observe that the GPU-enabled workflow is
on average 10x faster when compared to executing the same
workloads on the CPU.

Risco et al. [33] extend the SCAR framework [31] to sup-
port event driven GPU-enabled serverless workflows for effi-
cient data processing across diverse computing infrastructures.

7GPU Manager: https://github.com/tkestack/gpu-manager

Physical GPU
GPU Manager Framework

vGPU vGPU vGPU vGPU vGPU

fn

vGPU
...

Physical GPU
NVIDIA-Docker

fn

GPU

fn

vGPU

fn

vGPU

a. b.

Figure 5: a. shows using of GPU for serverless execution
as proposed by [24], b. shows GPU sharing for serverless
proposed by [36], a physical GPU is split into multiple vGPUs
that can individually be assigned to functions.

By combining the use of both AWS Lambda, for the execution
of numerous short jobs, and AWS Batch, for the execution of
resource-intensive GPU-enabled applications, an open-source
platform has been developed to create scale-to-zero serverless
workflows. AWS Batch runs Docker-based computational
jobs on EC2 instances, the resource requirements of these
jobs can be set by the user in terms of: an increased memory
allocation, the assignment of the desired number of CPUs, the
instance types to be used and the assignment of GPU devices
to containers.

Though AWS Batch is a traditional batch processing sys-
tem, it can scale-to-zero, terminating cluster nodes while keep-
ing managed job queues at no extra cost. When paired with
AWS Lambda’s event-driven approach through SCAR, it en-
ables automatic job submissions when new files are uploaded.
Integrating AWS Batch in SCAR was done by redesigning the
faas-supervisor 8, which is an open-source library to manage
the execution of user scripts and containers in AWS Lambda
and also in charge of managing the input and output of data
on the Amazon S3 storage back-end. The redesign enables
job delegation to AWS Batch using the FaaS Supervisor in
AWS Lambda. This platform has three execution modes:

• lambda: User-defined container images run on AWS
Lambda using udocker, which pulls images from a reg-
istry and executes them in Lambda’s runtime.

• batch: In this mode, AWS Lambda serves as an event
gateway, translating function invocations into AWS
Batch jobs. The event details are sent as an environ-
ment variable to the job, enabling the FaaS Supervisor
on the EC2 instance to handle data staging.

• lambda-batch: Functions initially run on AWS Lambda,
but if they fail or approach a defined timeout, AWS Batch
takes over. This enables Lambda to handle sudden bursts
of short jobs and ensures more resource-intensive tasks
are processed when Lambda limits are surpassed.

8faas-supervisor:https://github.com/grycap/faas-supervisor

7

https://github.com/tkestack/gpu-manager
https://github.com/grycap/faas-supervisor

user

SCAR

lambda

lambda-batch

batch
Execution

Mode?

Job
submitted to

AWS
Lambda

Job
submitted to

AWS
Lambda

Job
submitted
to AWS
Batch

Job submitted
to AWS Batch
(if timeout is

reached)

Figure 6: Workflow to integrate GPUs via AWS Batch, using
a modified SCAR framework, as described in [33].

In this workflow, the GPU workloads are executed on
AWS Batch. This approach is not truly serverless, as the
GPU workloads are handled by AWS Batch, which is not a
serverless service. The average cost of execution on AWS
Batch is approximately 300x higher than AWS Lambda, this
is due to the fact that unlike lambda, batch does not support
per-millisecond billing and is instead billed per second. This
significantly increases the cost of execution and is only ben-
eficial when the execution time on lambdas is significantly
higher than on batch. In the authors’ evaluation, executing
jobs on AWS Batch was cheaper than lambdas only in cases
where lambdas took 50x more time compared to batch. Apart
from cost, parallelism also becomes an issue with batch since
it runs on EC2 instances and starting up multiple instances
takes time because a new VM is provisioned for each instance,
instead of containers as in lambda.

4.3 Workflows for Scientific Workloads

Scientists in diverse fields, like high-energy physics and as-
tronomy, are creating complex workflows with numerous in-
terconnected tasks, exemplified by projects like Montage [18],
LIGO [1], and CyberShake [13]. These workflows involve a
substantial number of jobs, extensive input and output data,
and intricate task dependencies. To manage these workflows,
scientists typically employ workflow management systems
(WMS) necessitating the setup and configuration of clusters
as the execution environment.

However, configuring large-scale clusters can be daunting,
especially for researchers unfamiliar with high-performance
computing (HPC), leading to significant resource under-
utilization due to complex task dependencies. The serverless
paradigm provides a good solution to this problem as the job
of infrastructure management is left to the provider. Below
we look at some serverless workflows that are designed to
handle scientific workloads.

John et al. [20] propose the Serverless Workflow Enable-
ment and Execution Platform (SWEEP). SWEEP workflows
are represented abstractly using a Directed Acyclic Graph
(DAG) formalism. Here, tasks are nodes, and an edge from
node X to node Y indicates that X must finish before Y can
start. The main contribution of SWEEP is implementation of
complex flow control such as nested scatter and multi-level
gather. It offers several workflow constructs for static and
dynamic control of execution. Dynamic parallelism is imple-
mented using the task properties scatter and follow, which
are described below.

The scatter property multiplies task Y based on a list-type
output from predecessor task X. Each new copy of Y (Yi)
receives one item from the list. Descendant tasks Z of scat-
tered Y are controlled by the follow property. If Z follows
ancestor node U, it multiplies by the same value as U, and
there’s a path from Ui to Zi for all related nodes. Essentially,
Zi aggregates output from Ui. If no follow value is specified,
one copy of Z is created, and there is an edge to Z from each
of its original workflow predecessors.

By combining these, custom multi-level scatter and gather
behaviour can be defined, some of which are illustrated in
Figure 7. Error handling behaviour can be controlled in a
task-specific fashion by limiting the number of retries, and
specifying whether a task failure should be ignored or should
halt workflow execution.

Roy et al. [35] propose DayDream to execute scientific
HPC workflows on serverless platforms with the aim of min-
imising execution time and cost. According to them, HPC
workflows are highly dynamic and therefore often lead to
overprovisioning or underprovisioning of resources when de-
ployed traditionally using servers. Due to this, the serverless
model of deployment is well suited for them.

However, there is a challenge using serverless for HPC
workloads currently, that is, unlike HPC and VM clusters,

8

W

X

Y

Z

W

X1 X2

Y1 Y2

Z

W

X1 X2

Y11 Y12 Y21 Y22

Z

W

X1 X2

Y11 Y12 Y21 Y22

Z

W

X1 X2

Y11 Y12 Y21 Y22

Z1 Z2

W

X1 X2

Y11 Y12 Y21 Y22

Z11 Z22Z12 Z21

1. 2. 3.

4a. 4b. 4c.

Figure 7: Multi-level scatter and gather behaviour imple-
mented in SWEEP. Step 1 shows the original workflow defi-
nition, with dotted lines indicating dynamic tasks that have
scatter and/or follow properties yet to be resolved. In Step 2,
task X scatters based on output from task W. Task Y follows
X. In Step 3, the tasks Yi scatter on output from Xi. Three ver-
sions of Step 4 are shown, depending on the follow-property
of task Z. In 4a, task Z does not have the property specified.
In 4b, task Z follows task X, with each Zi gathering the output
from an Xi. In 4c, task Z follows task Y, forming parallel
chains of tasks.

serverless resources are not pre-allocated, resulting in startup
delays or cold start times. These delays, often comprising 25%
to 60% of execution time, have the potential to prolong work-
flow execution, diminishing the advantages of serverless com-
puting. Typically, cold starts in serverless are minimized by
predicting function invocations using a time-series based pre-
diction and pre-warming containers, their experiments show
that HPC DAGs, primarily dynamic and irregular in nature,
exhibit varying execution paths for different inputs and opera-
tions. They lack a predictable time-series pattern, making it
challenging to predict and warm up the invoked components.
So, applying state-of-the-art serverless techniques yields sub-
optimal solutions for complex real-world scientific workflows.

DayDream utilizes a hot start mechanism, separating
the runtime environment from the component (function)
code. This decoupling makes a hot started function instance
suitable for the execution of any component, unlike warm
started instances and enables DayDream to predict the total
component count rather than individual types, significantly
reducing cold start overhead and minimizing keep-alive costs.

DayDream also predicts the number of instances to
hot start. To calculate how many serverless instances to hot-
start DayDream predicts the phase concurrency9. The authors

9A phase refers to multiple components which can run in parallel, without
any data or state dependency between them. In a phase, a component can
have multiple running instances, the sum of which is component concurrency.
The sum of all components concurrences in a phase constitutes the phase
concurrency.

noted that when examining the phase concurrency frequency
histogram, a discernible trend emerges – the samples can be
modelled by a statistical distribution, Weibull distribution is
used by the authors in this case. During the initial run of
an HPC DAG, DayDream identifies and establishes Weibull
distribution parameters for phase concurrency frequency. In
subsequent runs, it generates sample numbers according to
this distribution for each phase. HPC workflows are typically
executed multiple times with varying inputs and operations.
These generated samples guide DayDream in determining
how many function instances to hot start for each phase.

DayDream reduces the overall service time by more than
45% over the traditional scientific workflow manager Pegasus.

4.4 Workflows for the Cloud Continuum
Cloud Continuum is the seamless integration of various types
of cloud capabilities and services, including data centre, pri-
vate cloud, public cloud, hybrid cloud, and multi clouds. It
consists of cloud, edge and fog tiers. This section discusses
some serverless workflows for applications that span across
the cloud continuum.

Risco et al. [34] want to use public clouds with their vast
resource (AWS etc.), on-premise clouds with their greater
privacy and federated data providers all in a single serverless
workflow. It is useful when sensitive data (like medical data)
cannot be on the public cloud, but processing related to the
data needs the ’unlimited’ resources of a large public cloud
because it would be too slow otherwise. They use SCAR [31]
and OSCAR [32] frameworks along with minIO 10 to create a
serverless workflow where minIO is run on premise, and can
communicate with the AWS S3 API to use AWS Lambdas
(and other AWS services) to trigger serverless functions and
Onedata [9], a global data management system that provides
access to distributed storage resources for data-intensive sci-
entific computations, issues revocable access tokens for space
access, enhancing security. The on-premise cloud consists of
open source platforms like Kubernetes and OpenFaaS along
with a custom FDL for defining the workflow so that only one
trigger can invoke the chain of functions from Kubernetes to
AWS, as illustrated in Figure 8.

Sicari et al. [41] introduce OpenWolf, a versatile Server-
less Workflow Management System designed to harness the
FaaS paradigm for orchestrating intricate scientific workflows
across the Cloud-Edge Continuum. Their approach involved
federating a Continuum environment through a Kubernetes
Cluster using K3S11. Within this environment, OpenFaaS was
deployed to create architecture-agnostic functions. Addition-
ally, they crafted a Workflow Agent, a compact microservice
capable of parsing Workflow Manifest files and efficiently

10MinIO: High Performance, Kubernetes Native Object Storage: https:
//min.io/

11K3S, a Kubernetes distribution for IoT & edge computing: https://
K3S.io/

9

https://min.io/
https://min.io/
https://K3S.io/
https://K3S.io/

define workflow

upload input

user trigger

MinIO

store output

OSCAR

store output

AWS
Lambda

AWS S3
create

resourcesSCAR

OneData

On-premise

Public Cloud

Federated

trigger

download result

Figure 8: A workflow involving on-premise cloud, public
cloud and a federated data storage, as proposed by Risco et
al. [34]. SCAR manages resources across public and private
clouds, OSCAR is used to deploy serverless functions on-
premise using kubernetes.

routing function data in alignment with the workflow’s struc-
ture. According to the authors, the shortcomings of open
source serverless platforms that prevented them from being
used in scientific workflows in the cloud-edge continuum was
that:

• they do not natively support workflows with single/multi-
ple trigger(s), many-to-many relationships between func-
tions, data pre- and post-processing filters and parallel
and sequential process execution, allowing only sequen-
tial composition of functions without data pre- and post-
processing.

• and, serverless does not guarantee architecture trans-
parency. It is not possible to transparently deploy func-
tions over x64 platforms in Cloud, while ARM architec-
tures are used in Edge.

It was required to establish a unified computing cluster that
encompasses all Continuum nodes and manages them through
a consistent interface facilitates the orchestration, composi-
tion, and distribution of functions across the Continuum.

For this purpose, K3S was chosen, mainly because of its
ability to run in resource constrained environments while
maintaining all Kubernetes features as well as support
for ARM and x64 architectures. An alternative to K3S is
microk8s, both of which are compared and benchmarked for
serverless workloads in [25] revealing that there are no signif-
icant benefits in one over the other, however microk8s does
not support ARM32 architectures which K3S does. OpenFaas
was deployed over the K3S nodes to build, deploy and trigger
functions. The cluster architecture includes a Redis instance

REDIS

OpenFaaS

Kubernetes

workflow
manifest

fn1
(edge)

workflow
manifest

fn2
(cloud)

fn1 fn2

Edge Node 1

Edge Node N

.

.

.

Cloud Node 1

Cloud Node N

.

.

.

Fog Node 1

Fog Node N

.

.

.

OpenWolf
Replica

Figure 9: Architecture of OpenWolf.

dedicated to storing both the workflow manifests and execu-
tion information. Within the K3S cluster, the OpenWolf Agent
serves as a central coordinator, facilitating communication
and coordination among the components and the functions
within the workflows.

The OpenWolf agent is a stateless microservice deployed
in the same Kubernetes Cluster as the serverless functions.
The architecture of OpenWolf is shown in Figure 9.

4.5 Stateful Serverless Workflows

The serverless model was initially designed for execution
of stateless functions, which means that each function is
ephemeral and does not persist data or share data with other
functions in the workflow. However, most modern applica-
tions require exchange of data between different parts of an
application. The serverless model was exploited to support
these stateful applications by using databases to manage state
but at the cost of performance [16, 37]. Below, we take a look
at some serverless workflow technologies that were designed
with state management as a priority.

Zhang et al. [51] believe that a key challenge in increasing
the general applicability of serverless computing lies in cor-
rectly and efficiently composing different functions to obtain
non-trivial end-to-end applications. This is fairly straightfor-
ward when functions are stateless, but becomes involved when
the functions maintain their own state (e.g., modify a data
structure that persists across invocations). Composing such
stateful serverless functions (SSFs) requires reasoning about
consistency and isolation semantics in the presence of concur-

10

rent requests and dealing with component failures. To this end,
they present Beldi, a library and runtime system for building
workflows of SSFs. Beldi runs on existing cloud providers
without any modification to their infrastructure.

Beldi’s goal is to guarantee exactly-once semantics to work-
flows in the presence of SSFs that fail at any point in their
execution, and to offer synchronization primitives (in the form
of locks and transactions) to prevent concurrent clients from
unsafely handling state. To do so, Beldi introduces novel re-
finements to an existing log-based approach to fault tolerance,
including new data structure and algorithms that operate on
this data structure, support for invocations of other SSFs with
a novel callback mechanism, and a collaborative distributed
transaction protocol. With these refinements, Beldi extracts
the fault tolerance already available in NoSQL databases, and
extends it to workflows of SSFs at low cost with minimal
effort from application developers.

To make SSFs fault-tolerant and provide concurrency
control, Beldi relies on strongly consistent databases (for
example, DynamoDB) to manage state. The benefit of this
is that the application developers do not have to worry about
concurrency control, fault tolerance, or manually making all
of their functions idempotent. The tradeoff for this is that
if these databases were to become unavailable, for example
due to network partitions, SSFs that write to these unavail-
able databases would also become unavailable until the parti-
tion was resolved. An alternative to using strongly consistent
databases is to use ACID databases, like Amazon Aurora,
however, ACID databases are not enough to guarantee exactly-
once semantics for function invocations since they provide
atomicity for read and write operations, but have no support
for invocations.

Shillaker et al. [40] argue that current serverless platforms
use stateless containers to isolate functions, which hinders
memory sharing. This necessitates redundant data duplica-
tion and serialization, resulting in performance and resource
expenses. They advocate for a lightweight isolation method
enabling direct memory sharing between functions, ultimately
cutting down on resource overhead while sharing state across
functions. To achieve this, they present FAASM, a serverless
runtime that leverages the LLVM compiler toolchain to trans-
late applications into WebAssembly. It supports functions
in various languages like C/C++, Python, TypeScript, and
JavaScript and can seamlessly integrate with current server-
less platforms. FAASM also introduces Faaslets, a novel
high-performance serverless computing concept, employing
software-fault isolation (SFI) through WebAssembly to iso-
late function memory. Faaslets enable memory sharing in the
same address space, removing the need for costly data trans-
fers when functions run on the same machine. They employ a
two-tier state architecture: a local tier for in-memory sharing
and a global tier for distributed state access across hosts.

In Figure 10, Faaslets A and B access a shared region (S)
from a distinct part of the common process memory (central

A B S

offeset: 0 +A +A+S

0 +B +B+S

Faaslet A

Faaslet B

Process Memory

Figure 10: Faaslet shared memory region mapping.

region). Each Faaslet has a private memory region (A and B)
allocated from the process memory. Functions within each
Faaslet access all memory as offsets from zero, creating a
unified linear address space. Faaslets map these offsets to ei-
ther a private region (lower offsets) or a shared region (higher
offsets). Faaslets outperform containers and VMs with a mem-
ory footprint under 200 KB and cold-start times under 10 ms.
FAASM is the serverless runtime that uses Faaslets to execute
distributed stateful serverless applications across a cluster.
FAASM is designed with a distributed architecture where
multiple runtime instances run on servers, each handling a
distinct pool of Faaslets.

FAASM uses faaslets, which builds on SFI, for isola-
tion of functions while having benefits of memory safety,
resource isolation, efficient state sharing and a shared file sys-
tem between functions. Some alternative methods for function
isolation include containers, VMs and unikernels. While con-
tainers are traditionally the most widely used method, they
do not allow for efficient state sharing and are resource in-
tensive, with a memory footprint of hundreds of megabytes.
SFI has been used in several existing serverless systems like
Terrarium12 and Cloudfare Workers13, however they don’t
isolate CPU or network use and rely on data shipping for ac-
cessing state. Faaslets extend SFI to enable resource isolation
by using Linux cgroups and virtual network interfaces, and
in-memory state sharing by adding shared memory regions to
the existing WebAssembly memory model.

The main downside of faaslets is that it can only work with
languages that have WebAssembly support.

4.6 Workflows for Machine Learning
Machine learning workflows are intricate, with diverse stages
like preprocessing, training, and tuning, each demanding vary-
ing computational resources. This complexity often leads to
over-provisioning of resources. While serverless computing
offers a solution to resource management, applying it to exist-
ing ML frameworks faces challenges due to resource limita-
tions imposed by serverless platforms, coupled with the fact

12Fastly Terrarium: https://wasm.fastlylabs.com/
13Cloudfare Workers: https://workers.cloudflare.com/

11

https://wasm.fastlylabs.com/
https://workers.cloudflare.com/

Parameter Server
(MongoDB)

FL Admin

Client DB
 (MongoDB)

8
Call aggregator

9
Calculate and upload

new global model

Function Aggregator

2
Fetch invocation token

3
Invoke clients
 with tokens

10
Invoke clients
for evaluation

FedLess Controller
Stateful Process

FedLess Control Plane
(Kubernetes)

1
Configure and start round

Auth Server
(AWS Cogito)

5
Load global

model

6
Calculate

local updates

4
Validate token

Client #1 (AWS)

Client #2 (Google
Cloud)

..

Client #N (on-premise)

7
Upload client

 update

Parameter Exchange

Request / Action

Param. server credentials

Cogito auth token

Figure 11: Workflow in Fedless.

that existing ML frameworks commonly assume abundant
resources, such as memory. For instance, the ML framework
Spark generally loads all training data into memory, which is
not possible in serverless instances.

Training a neural network in AWS Lambda has been evalu-
ated previously [11], revealing that there is no benefit to using
serverless for training neural networks compared to the non-
serverless approach. Some workflows focusing on adapting
serverless computing for ML workloads have been proposed
and are detailed in this section.

Carreira et al. [6] present Cirrus, a comprehensive frame-
work designed specifically for machine learning training
within serverless cloud environments, such as AWS Lambdas.
It offers user-friendly tools to facilitate various aspects of
machine learning workflows, including dataset preprocess-
ing, training, and hyperparameter optimization. It has four
design principles, namely, adaptive and fine-grained resource
allocation to avoid over-provisioning resources, a stateless
server-side backend for robust and efficient management of
serverless compute resources, end-to-end serverless API for
model training, dataset preprocessing, feature engineering,
and parameter tuning, and high scalability.

Cirrus employs three key components to achieve these
goals. First, it offers a Python frontend for ML developers,
enabling an API for ML training and efficient management
of large-scale computations in a serverless environment. Sec-
ondly, to address low-latency serverless storage limitations,

Cirrus provides a distributed data store for shared intermedi-
ate data. Finally, it utilizes a serverless lambda-based worker
runtime with efficient access to training datasets in S3 and
intermediate data in the distributed data store. Since ML mod-
els can have hundreds of updates per second, it is required for
the data store to be low latency and have a high throughput.

Cirrus makes use of a multithreaded server deployed
on cloud VMs that distributes the workload among many
cores, leading to about 30% increase in throughput, but even-
tually performance of the data store becomes bottlenecked by
the network. To solve this, all the gradients transferred to and
from the data store are compressed, and the data store only
sends and receives sparse gradients and data structures. This
allows the data store to achieve latencies of 300 µs compared
to 10ms for AWS S3.
Cirrus’s Sparse Logistic Regression was compared with two
specialized VM-based ML training frameworks: TensorFlow
and Bosen. Cirrus was at least 5x faster than Bosen and at
least 3x faster than Tensorflow, while achieving lower loss
both times. Cirrus was also compared to PyWren, which is a
serverless framework providing map and reduce primitives, by
implementing a SGD training algorithm for Logistic Regres-
sion. Cirrus achieved 100x more model updates per second
compared to PyWren.

Grafberger et al. [12] presented a novel system and frame-
work for serverless Federated Learning (FL) called FedLess.
Federated learning is a machine learning approach that en-

12

ables model training across decentralized and distributed de-
vices or servers while keeping data localized and private. In
traditional machine learning, data is typically collected and
centralized in a single location for training, which can raise
privacy and security concerns.

Federated learning addresses these issues by allowing
model training to occur locally on individual devices or
servers, and only model updates are shared and aggregated.
FedLess enables FL on the serverless platforms of AWS,
Azure, Google Cloud and IBM Cloud as well as open source
platforms OpenWhisk and OpenFaaS while providing im-
portant features such as authentication, authorization, and
differential privacy.

As FL clients come from different institutions and networks
and need public internet access to reach the FL server, ensur-
ing that only authenticated and authorized entities can invoke
client functions is of utmost importance.

A workflow for training multiple clients in FedLess is
shown in Figure 11. First, the FL admin, that is the person who
manages function deployments and holds the data, selects the
model, client functions, and hyperparameters. The training
begins as the FedLess controller obtains an invocation token
from the Auth Server and instructs randomly chosen clients to
start. Clients validate the token, load the global model, train
locally, and upload their parameters. The controller waits for
client completion, initiates model aggregation, and evaluates
the global model, either from previous aggregation or by se-
lecting new clients for testing. The process resumes from step
2 if the accuracy threshold isn’t met.

FedLess costs on average about 50% less to reach the same
accuracy as Flower while taking on average 1.7x longer.

4.7 Workflows for Latency Sensitive Applica-
tions

The average invocation latency of AWS functions is around
14ms for a warm invocation and around 100ms for a cold
start, for latency sensitive applications like a user interactive
application, it leads to a bad user experience or an outright
unusable experience. It is amplified by the fact that in a server-
less application one interaction can lead to invocation of many
functions, which worsens the issue. The workflow technolo-
gies described in this section attempt to mitigate this issue.
Jia et al. [19] aim to reduce latency in serverless computing so
that it could be used for applications that require microsecond
latency. Although many papers focused on reducing latency
by getting rid of the heavyweight docker containers and using
other methods of isolation, the authors believe that the level
of isolation that containers provide is essential. Instead, they
reduce latency by focusing on other aspects like inter and intra
process communication, optimizing the scheduling of func-
tions by taking into account the number of invocations and the
run time per function, efficient threading for I/O operations.

To this end, they present Nightcore, a serverless func-

Process

Docker container

Gateway

Per-Fn dispatch queues

Fn1
Fn2
FnN

Per-request tracing logs

Req1
Req2

.....
ReqN

Nightcore's Engine

Nightcore's
runtime library

worker threads

Fn code

Fn worker

Launcher

Fn container

(Fn1)

Nightcore's
runtime library

worker threads

Fn code

Fn worker

Launcher

Fn container

(FnN)

Worker Server

...

VM or bare metal machine

User provided function code

fast path for function call

Figure 12: Architecture of Nightcore.

tion runtime with microsecond-scale overheads that provides
container-based isolation between functions. Nightcore fol-
lows the conventional FaaS system structure with a frontend
and backend separation. The frontend serves external func-
tion requests and manages tasks like function registration
through an API gateway. The backend is composed of inde-
pendent worker servers, offering scalability and fault toler-
ance. Each worker server runs a Nightcore engine process
and function containers, where each container hosts a regis-
tered serverless function, ensuring one container per function
on each worker server. Nightcore’s engine directly handles
function containers and communicates with worker threads
within them. Nightcore’s architecture is illustrated in 12.

Nightcore optimizes local function calls within the same
worker server, enhancing performance without relying on
the API gateway, traditionally in serverless all function calls
are routed through the gateway even if the function will be run
on the same worker. If necessary, Nightcore can route these
calls through the gateway when running on different worker
servers, and different workflows remain logically independent
and are executed on separate worker servers. However, for
this Nightcore needs to know which set of functions form a
single application. In practice, this knowledge comes directly
from the developer, e.g., Azure Functions allow developers
to organize related functions as a single function app. This
requires extra information from the developer, the absence

13

of which will affect performance. Also, Nightcore’s perfor-
mance optimization for internal function calls assumes that an
individual worker server is capable of running most function
containers from a single application, which may be difficult
to guarantee in a multi-tenant environment.

Nightcore offers container-level isolation between func-
tions but doesn’t ensure isolation between repeated invo-
cations of the same function because different invocations of
the same functions are run within the same process. This com-
promise suits microservices, given the challenge of achieving
rapid isolated execution environments. When using remote
procedure call (RPC) servers for microservices, Nightcore’s
isolation matches containerized RPC servers while also pro-
viding similar guarantees as the RPC servers.

Nightcore employs low-latency message channels for
swift communication, using 1KB messages. Each message
begins with a 64-byte header, including type and metadata,
followed by a 960-byte payload.

Lastly, Nightcore computes concurrency hints (τk) to
estimate the number of instances it needs to warm up.
Nightcore’s engine regulates concurrent function executions
using Little’s law which states that the ideal concurrency can
be estimated as the product of the average request rate and the
average processing time. The engine keeps two exponential
moving averages for each function, denoted as λk (request
rate) and tk (processing time). Request rates are calculated as
1 divided by the interval in consecutive function invocations
(Fnk). Processing times are determined as the time between
dispatch and completion timestamps, excluding queueing de-
lays. When receiving an invocation request of Fnk, the engine
will only dispatch the request if there are fewer than τk con-
current executions of Fnk . Otherwise, the request will be
queued, waiting for other function executions to finish.

Nightcore achieves around 1.5x to 3x higher throughput
and up to 69% reduction in tail latencies compared to a RPC
server, while OpenFaaS consistently underperforms an RPC
server in the authors’ evaluation.

Kotni et al. [26] propose Faastlane, a serverless orches-
tration service developed atop Apache OpenWhisk, which
minimizes function interaction latency by striving to execute
functions of a workflow as threads within a single process of
a container instance, which eases data sharing via simple load-
/store instructions. In most serverless applications, functions
work together and need to exchange data between them often,
which is hindered by the fact that the functions run in separate
and isolated containers. Although prior work has explored the
idea of getting rid of containers and using lightweight alter-
natives, like a thread, process or WebAssembly runtime, as a
unit of isolation [2, 3, 40], Faastlane cleverly combines execu-
tion of function containers, processes or threads depending
on the requirement.

Faastlane uses a combination of containers, processes
and threads for function isolation. Although using threads
for isolation has benefits of low latency communication via a

shared address space and low start-up overhead, interpreted
languages like Python use a global interpreter lock that pre-
vents concurrent execution of application threads. This limits
the applicability of threads as isolation. Running functions as
processes also presents the limitation that a single container
may not have enough vCPUs to run all functions concurrently
as processes in case of a massively parallel workload. Faast-
lane solves this by using a static workflow composer that
analyses the workflow to determine if parts of the workflow
should be executed in containers, threads or processes by tak-
ing into account the amount of parallelism in the workflow.
Functions executed as threads share an address space and
so can access data in that space without restriction, this is
often undesirable for security reasons and it is required often
required that sensitive data be isolated.

Faastlane uses Intel MPK to provide thread-
granularity memory isolation for functions that share a
virtual address space. While other techniques exist for in-
process memory isolation, such as [5,7], prior work has shown
that Intel MPK has a comparatively low overhead [15, 45].
The downside of using MPK is that it is only available on
certain Intel CPUs.

In their evaluation, the authors find that Faastlane acceler-
ates workflow instances by up to 15×, and reduces function
interaction latency by up to 99.95% compared to OpenWhisk.

5 Taxonomy of state-of-the-art serverless
workflows

This section answers RQ1: Which types of applications ben-
efit from the state- of-the-art serverless workflows? After
surveying the literature in the previous section, we now con-
struct a taxonomy of serverless workflows, grouping them by
the type of application that they support. All the serverless
workflows in the literature targeted specific types or domains
of applications, aiming to either allow them to be deployed
serverless or to improve their performance when deployed
serverless. Considering this, we decided to taxonomize the
workflows by application type, as shown in Figure 3. We
group the workflows into seven categories, described below.

Workflows for code-data locality. Workflows that focus
on co-locating that function code and data come under this
category. Applications that work with large amounts of data
will benefit from these workflows as they won’t have to wait
for data to be shipped to the node executing the function,
some examples of such applications are graph processing ap-
plications, distributed databases and data processing pipelines.
The main design choices for these workflows are in the area
of scheduling and storage.

GPU enabled workflows. Workflows that allow using
GPU for computations in a serverless environment fall into
this category. Applications that can benefit from these work-
flows are compute intensive applications, for example image

14

and video processing. The main design choices for these work-
flows are in the area of scheduling and GPU virtualisation.

Scientific Workflows. Workflows that enable execution
of scientific applications fall into this category. Applications
with intricate task dependencies requiring complex function
invocation patterns can benefit from these workflows. The
main design choices for these workflows deal with cold starts
and function interaction patterns.

Cloud continuum workflows. Workflows that allow execu-
tion across the cloud continuum including public and private
clouds as well as cloud and edge devices come under this
category. Applications that need to have their computations or
data spread across public and private clouds or cloud and edge
devices can benefit from these workflows. The main design
choices of these workflows are in the area of edge computing.

Stateful workflows. Workflows that enable efficient state
management fall into this category. Applications needing low
latency state management along with features like state con-
sistency and fault tolerance can benefit from these workflows.
The main design decisions for these workflows are dealing
with function isolation and communication.

Machine learning workflows. Workflows that enable ma-
chine learning workloads like training, inference and hyper-
parameter tuning are under this category. ML applications
benefit from these workflows. The main design choices affect-
ing this type of workflow are in the area of communication.

Latency sensitive workflows. Workflows that aim to re-
duce end-to-end latency in serverless execution come under
this category. Applications that need strict latency targets, like
user-facing microservices, can benefit from these workflows.
The main design choices for this type of workflow fall in the
areas of function isolation, cold starts and communication.

We note that there is some overlap in the above-mentioned
categories, for example, workflows for code-data locality also
have the effect of reducing latency and therefore can also be
considered in latency sensitive workflows. Several categories
also deal with joint challenges, latency sensitive workflows
and stateful workflows both deal with challenges in function
isolation and communication between functions, latency sen-
sitive workflows and scientific workflows both have to deal
with cold starts, while GPU enabled workflows can also ben-
efit applications using machine learning workflows as ML
workloads benefit greatly from using GPUs.

6 Current Research Areas in Serverless Work-
flows

This section answers RQ2: What are the current areas of
research for different domains in serverless workflows?

To get an idea of current research areas in serverless work-
flows, keyword analysis was performed. To obtain the data
for keyword analysis, the platforms Scopus 14 and Web of

14Scopus: https://www.scopus.com/home.uri

Figure 13: Number of publications having ’serverless’, ’work-
flow’ and the specified words somewhere in the text. Data
collected from Google Scholar.

Science 15 were considered, Scopus was chosen because we
found it included more publications as well as provided a
wider range of metrics to evaluate research impact. First, the
Scopus database was queried for publications having ’server-
less’ and ’workflow’ as keywords. This gave us an idea of the
different domains that are interested in serverless workflows,
as shown in Figure 14. Next, to get an understanding of which
areas in serverless are of interest in these different domains,
a keyword co-occurrence analysis was carried out where we
check which other keywords appear alongside ’serverless’ and
’workflow’ in these publications. The top 6 domains, apart
from computer science, and keywords in that domain that ap-
pear alongside ’serverless’ and ’workflow’ are discussed next.
The top 6 domains were chosen as a cut-off here because after
the top 5, all the other domains have less than 10 publications
between 2014-2023.

Computer Science. The top keywords that appear along-
side ’serverless’ and ’workflow’ in publications in the domain
of computer science are: performance, storage, containers,
scientific workflows. This suggests that the most publications
related to serverless workflows in the domain of computer sci-
ence deal with improving performance, the keywords storage
and containers being second the third suggest that research is
also focused on finding methods of exchanging data and state
efficiently as well as reducing latency in workflows.

Engineering. The top 5 keywords that appear alongside
’serverless’ and ’workflow’ in publications in the domain of
engineering are: performance, storage, containers, internet of
things. The keyword co-occurrence in the domain of engineer-
ing has a lot of overlap with computer science, suggesting
similar research interests, the keyword ’internet of things’ sug-
gests interest in using serverless with IoT and edge devices.

15Web of Science: https://www.webofscience.com/wos/

15

https://www.scopus.com/home.uri
https://www.webofscience.com/wos/

Figure 14: Number of publications having the keywords
’serverless’ and ’workflow’ between 2014-2023 grouped by
subject area, from the Scopus dataset.

Mathematics. The top 5 keywords that appear alongside
’serverless’ and ’workflow’ in publications in the domain of
mathematics are: Workflow Scheduling, Scientific Workflows,
Performance Modelling, Performance, Optimization. From
these keywords we can see that the research is mostly concen-
trated in improving, optimising and evaluating performance.

Decision Sciences. The top 5 keywords that appear along-
side ’serverless’ and ’workflow’ in publications in the domain
of decision sciences are: Storage, Containers, Machine Learn-
ing, Scientific Workflows. We can gather from this that for
decision sciences, serverless research focuses mainly on stor-
age and ML workflows.

Medicine. The top 5 keywords that appear alongside
’serverless’ and ’workflow’ in publications in the domain
of medicine are: AWS Lambda, Wireless Communication, Ven-
dor Lock-in, Time Factors. This suggests that for the medical
domain, AWS Lambda might be widely used as well as server-
less research focusing on wireless communication, vendor
lock-in and time/latency.

Planetary Science. The top 5 keywords that appear along-
side ’serverless’ and ’workflow’ in publications in the domain
of planetary sciences are: Software Testing, Web Services,
Seismology, Seismic Imaging, Event-driven, suggesting that
for the field of planetary science the applications concerned
with seismology are of interest in regard to serverless.

Physics and Astronomy. The top 5 keywords that appear
alongside ’serverless’ and ’workflow’ in publications in the
domain of physics and astronomy are: Cold-start, Parallel
Functions, Function Fusion, Containers. These suggest that
in the domain of physics and astronomy, research in serverless

is in the area of improving latency (cold starts), parallelism
of functions and function interaction patterns.

Overall, we see a good amount of overlap in co-occurrence
of keywords across domains. The keywords performance,
storage, containers and scientific workflow are common for
most of the domains, suggesting a strong interest of research
related to serverless workflows for these areas.

7 Areas for Future Research in Serverless
Workflows

This section answers RQ3: What are the potential areas for
future research in serverless workflows?. To answer this, trend
analysis was performed using keywords obtained in Section
6. To perform the trend analysis, the total number of publica-
tions per year having the required keywords were obtained
from Google Scholar using [43]. Figure 13 depicts the trend
of co-occurrence of the specified keywords alongside key-
words serverless and workflow from 2014 to 2023. We see an
increasing interest in all keywords over the years, however
seismology, vendor lock-in and storage are comparatively low
in volume while being of interest in their specific domains,
as detailed in Section 6. These areas can be useful for future
research in serverless workflows.

8 Conclusion

In this literature survey, we documented the available litera-
ture for serverless workflows and taxonomized them by the
type of application. These workflows extend the range of ap-
plications that can be deployed serverless by extending the
functionality offered by existing serverless platforms.

We also look at the current research areas in serverless
workflows by performing a keyword co-occurrence analysis
from the Scopus database where we find that besides com-
puter science other domains like engineering, mathematics,
medicine and physics are also interested in serverless work-
flows, each focusing on different areas of research in server-
less like performance, storage, scientific workflows, latency,
vendor lock-in, among others. We find that some keywords
are unique to certain domains, for example the publications in
the field of medicine dealing with serverless workflows focus
more on latency and vendor lock-in, while most keywords,
like performance, storage and containers are common across
most domains.

Lastly, we find areas for future research in serverless
workflows by performing a trend analysis of keywords co-
occurring with serverless and workflow, revealing that storage,
vendor lock-in and seismology applications are of interest for
future research.

References
[1] ABRAMOVICI, A., ALTHOUSE, W. E., DREVER, R. W., GÜRSEL,

16

Y., KAWAMURA, S., RAAB, F. J., SHOEMAKER, D., SIEVERS, L.,
SPERO, R. E., THORNE, K. S., ET AL. Ligo: The laser interferometer
gravitational-wave observatory. science 256, 5055 (1992), 325–333.

[2] AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M., SATZKE, K.,
BECK, A., ADITYA, P., AND HILT, V. {SAND}: Towards {High-
Performance} serverless computing. In 2018 Usenix Annual Technical
Conference (USENIX ATC 18) (2018), pp. 923–935.

[3] AL-ALI, Z., GOODARZY, S., HUNTER, E., HA, S., HAN, R., KELLER,
E., AND ROZNER, E. Making serverless computing more serverless.
In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD) (2018), IEEE, pp. 456–459.

[4] BALDINI, I., CASTRO, P., CHANG, K., CHENG, P., FINK, S.,
ISHAKIAN, V., MITCHELL, N., MUTHUSAMY, V., RABBAH, R.,
SLOMINSKI, A., ET AL. Serverless computing: Current trends and
open problems. Research advances in cloud computing (2017), 1–20.

[5] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND KARP, B. Wedge:
Splitting applications into reduced-privilege compartments. USENIX
Association.

[6] CARREIRA, J., FONSECA, P., TUMANOV, A., ZHANG, A., AND KATZ,
R. Cirrus: A serverless framework for end-to-end ml workflows. In
Proceedings of the ACM Symposium on Cloud Computing (2019),
pp. 13–24.

[7] CHEN, Y., REYMONDJOHNSON, S., SUN, Z., AND LU, L. Shreds:
Fine-grained execution units with private memory. In 2016 IEEE
Symposium on Security and Privacy (SP) (2016), IEEE, pp. 56–71.

[8] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data processing
on large clusters. Communications of the ACM 51, 1 (2008), 107–113.

[9] DUTKA, Ł., WRZESZCZ, M., LICHOŃ, T., SŁOTA, R., ZEMEK, K.,
TRZEPLA, K., OPIOŁA, Ł., SŁOTA, R., AND KITOWSKI, J. Onedata–
a step forward towards globalization of data access for computing
infrastructures. Procedia Computer Science 51 (2015), 2843–2847.

[10] EISMANN, S., SCHEUNER, J., VAN EYK, E., SCHWINGER, M.,
GROHMANN, J., HERBST, N., ABAD, C. L., AND IOSUP, A. A re-
view of serverless use cases and their characteristics. arXiv preprint
arXiv:2008.11110 (2020).

[11] FENG, L., KUDVA, P., DA SILVA, D., AND HU, J. Exploring serverless
computing for neural network training. In 2018 IEEE 11th international
conference on cloud computing (CLOUD) (2018), IEEE, pp. 334–341.

[12] GRAFBERGER, A., CHADHA, M., JINDAL, A., GU, J., AND GERNDT,
M. Fedless: Secure and scalable federated learning using serverless
computing. In 2021 IEEE International Conference on Big Data (Big
Data) (2021), IEEE, pp. 164–173.

[13] GRAVES, R., JORDAN, T. H., CALLAGHAN, S., DEELMAN, E.,
FIELD, E., JUVE, G., KESSELMAN, C., MAECHLING, P., MEHTA,
G., MILNER, K., ET AL. Cybershake: A physics-based seismic haz-
ard model for southern california. Pure and Applied Geophysics 168
(2011), 367–381.

[14] GU, J., SONG, S., LI, Y., AND LUO, H. Gaiagpu: Sharing gpus in
container clouds. In 2018 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Ubiquitous Computing & Communica-
tions, Big Data & Cloud Computing, Social Computing & Networking,
Sustainable Computing & Communications (ISPA/IUCC/BDCloud/So-
cialCom/SustainCom) (2018), IEEE, pp. 469–476.

[15] HEDAYATI, M., GRAVANI, S., JOHNSON, E., CRISWELL, J., SCOTT,
M. L., SHEN, K., AND MARTY, M. Hodor:{Intra-Process} isolation
for {High-Throughput} data plane libraries. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19) (2019), pp. 489–504.

[16] HELLERSTEIN, J. M., FALEIRO, J., GONZALEZ, J. E., SCHLEIER-
SMITH, J., SREEKANTI, V., TUMANOV, A., AND WU, C. Server-
less computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651 (2018).

[17] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY, D.
Dryad: distributed data-parallel programs from sequential building
blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007 (2007), pp. 59–72.

[18] JACOB, J. C., KATZ, D. S., BERRIMAN, G. B., GOOD, J. C., LAITY,
A., DEELMAN, E., KESSELMAN, C., SINGH, G., SU, M.-H., PRINCE,
T., ET AL. Montage: a grid portal and software toolkit for science-grade
astronomical image mosaicking. International Journal of Computa-
tional Science and Engineering 4, 2 (2009), 73–87.

[19] JIA, Z., AND WITCHEL, E. Nightcore: efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In Pro-
ceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (2021),
pp. 152–166.

[20] JOHN, A., AUSMEES, K., MUENZEN, K., KUHN, C., AND TAN, A.
Sweep: accelerating scientific research through scalable serverless
workflows. In Proceedings of the 12th IEEE/ACM International Con-
ference on Utility and Cloud Computing Companion (2019), pp. 43–50.

[21] JUVE, G., CHERVENAK, A., DEELMAN, E., BHARATHI, S., MEHTA,
G., AND VAHI, K. Characterizing and profiling scientific workflows.
Future generation computer systems 29, 3 (2013), 682–692.

[22] KEELE, S., ET AL. Guidelines for performing systematic literature
reviews in software engineering, 2007.

[23] KELLY, D., GLAVIN, F., AND BARRETT, E. Serverless computing:
Behind the scenes of major platforms. In 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD) (2020), IEEE, pp. 304–312.

[24] KIM, J., JUN, T. J., KANG, D., KIM, D., AND KIM, D. Gpu enabled
serverless computing framework. In 2018 26th Euromicro International
Conference on Parallel, Distributed and Network-based Processing
(PDP) (2018), pp. 533–540.

[25] KJORVEZIROSKI, V., AND FILIPOSKA, S. Kubernetes distributions
for the edge: serverless performance evaluation. The Journal of Super-
computing 78, 11 (2022), 13728–13755.

[26] KOTNI, S., NAYAK, A., GANAPATHY, V., AND BASU, A. Faastlane:
Accelerating {Function-as-a-Service} workflows. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21) (2021), pp. 805–820.

[27] KUHLENKAMP, J., WERNER, S., AND TAI, S. The ifs and buts of
less is more: A serverless computing reality check. In 2020 IEEE
International Conference on Cloud Engineering (IC2E) (2020), IEEE,
pp. 154–161.

[28] LUDÄSCHER, B., ALTINTAS, I., BERKLEY, C., HIGGINS, D.,
JAEGER, E., JONES, M., LEE, E. A., TAO, J., AND ZHAO, Y. Scien-
tific workflow management and the kepler system. Concurrency and
computation: Practice and experience 18, 10 (2006), 1039–1065.

[29] MAO, M., AND HUMPHREY, M. Auto-scaling to minimize cost and
meet application deadlines in cloud workflows. In Proceedings of 2011
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (2011), pp. 1–12.

[30] MICHENER, W., VIEGLAIS, D., VISION, T., KUNZE, J., CRUSE,
P., AND JANÉE, G. Dataone: Data observation network for
earth—preserving data and enabling innovation in the biological and
environmental sciences. D-Lib Magazine 17, 1/2 (2011), 12.

[31] PÉREZ, A., MOLTÓ, G., CABALLER, M., AND CALATRAVA, A.
Serverless computing for container-based architectures. Future Gener-
ation Computer Systems 83 (2018), 50–59.

[32] PÉREZ, A., RISCO, S., NARANJO, D. M., CABALLER, M., AND
MOLTÓ, G. On-premises serverless computing for event-driven data
processing applications. In 2019 IEEE 12th International conference
on cloud computing (CLOUD) (2019), IEEE, pp. 414–421.

[33] RISCO, S., AND MOLTÓ, G. Gpu-enabled serverless workflows for
efficient multimedia processing. Applied Sciences 11, 4 (2021), 1438.

17

[34] RISCO, S., MOLTÓ, G., NARANJO, D. M., AND BLANQUER, I.
Serverless workflows for containerised applications in the cloud con-
tinuum. Journal of Grid Computing 19 (2021), 1–18.

[35] ROY, R. B., PATEL, T., AND TIWARI, D. Daydream: executing dy-
namic scientific workflows on serverless platforms with hot starts. In
SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis (2022), IEEE, pp. 1–18.

[36] SATZKE, K., AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M., BECK,
A., ADITYA, P., VANGA, M., AND HILT, V. Efficient gpu sharing
for serverless workflows. In Proceedings of the 1st workshop on high
performance serverless computing (2020), pp. 17–24.

[37] SCHLEIER-SMITH, J., SREEKANTI, V., KHANDELWAL, A., CAR-
REIRA, J., YADWADKAR, N. J., POPA, R. A., GONZALEZ, J. E.,
STOICA, I., AND PATTERSON, D. A. What serverless computing is
and should become: The next phase of cloud computing. Communica-
tions of the ACM 64, 5 (2021), 76–84.

[38] SHAFIEI, H., KHONSARI, A., AND MOUSAVI, P. Serverless com-
puting: a survey of opportunities, challenges, and applications. ACM
Computing Surveys 54, 11s (2022), 1–32.

[39] SHAHRAD, M., FONSECA, R., GOIRI, I., CHAUDHRY, G., BATUM, P.,
COOKE, J., LAUREANO, E., TRESNESS, C., RUSSINOVICH, M., AND
BIANCHINI, R. Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In 2020 USENIX
annual technical conference (USENIX ATC 20) (2020), pp. 205–218.

[40] SHILLAKER, S., AND PIETZUCH, P. Faasm: Lightweight isolation
for efficient stateful serverless computing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20) (2020), pp. 419–433.

[41] SICARI, C., CARNEVALE, L., GALLETTA, A., AND VILLARI, M.
Openwolf: A serverless workflow engine for native cloud-edge con-
tinuum. In 2022 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and Comput-
ing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cy-
ber Science and Technology Congress (DASC/PiCom/CBDCom/Cyber-
SciTech) (2022), IEEE, pp. 1–8.

[42] SKLUZACEK, T. J., CHARD, R., WONG, R., LI, Z., BABUJI, Y. N.,
WARD, L., BLAISZIK, B., CHARD, K., AND FOSTER, I. Serverless
workflows for indexing large scientific data. In Proceedings of the 5th
International Workshop on Serverless Computing (2019), pp. 43–48.

[43] STROBEL, V. Pold87/academic-keyword-occurrence: First release,
Apr. 2018.

[44] TANG, Y., AND YANG, J. Lambdata: Optimizing serverless computing
by making data intents explicit. In 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD) (2020), IEEE, pp. 294–
303.

[45] VAHLDIEK-OBERWAGNER, A., ELNIKETY, E., DUARTE, N. O.,
SAMMLER, M., DRUSCHEL, P., AND GARG, D. {ERIM}: Secure,
efficient in-process isolation with protection keys ({{{{{MPK}}}}}).
In 28th USENIX Security Symposium (USENIX Security 19) (2019),
pp. 1221–1238.

[46] WEN, J., AND LIU, Y. An empirical study on serverless workflow
service. arXiv preprint arXiv:2101.03513 (2021).

[47] WEN, J., AND LIU, Y. An empirical study on serverless workflow
service. arXiv preprint arXiv:2101.03513 (2021).

[48] WOHLIN, C. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th
international conference on evaluation and assessment in software
engineering (2014), pp. 1–10.

[49] YEH, T.-A., CHEN, H.-H., AND CHOU, J. Kubeshare: A framework
to manage gpus as first-class and shared resources in container cloud. In
Proceedings of the 29th international symposium on high-performance
parallel and distributed computing (2020), pp. 173–184.

[50] YU, M., CAO, T., WANG, W., AND CHEN, R. Following the data, not
the function: Rethinking function orchestration in serverless comput-
ing. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23) (2023), pp. 1489–1504.

[51] ZHANG, H., CARDOZA, A., CHEN, P. B., ANGEL, S., AND LIU, V.
Fault-tolerant and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20) (2020), pp. 1187–1204.

18

	Introduction
	Related Work
	Method of Literature Review
	Planning
	Conducting

	State-of-the-art Serverless Workflows
	Workflows Focusing on Code-Data Locality
	GPU Enabled Serverless Workflows
	Workflows for Scientific Workloads
	Workflows for the Cloud Continuum
	Stateful Serverless Workflows
	Workflows for Machine Learning
	Workflows for Latency Sensitive Applications

	Taxonomy of state-of-the-art serverless workflows
	Current Research Areas in Serverless Workflows
	Areas for Future Research in Serverless Workflows
	Conclusion

