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Abstract

Energy measurement systems for computer systems have
emerged as a promising approach to analyze the energy
consumption of one or more computer systems. This paper
presents a comprehensive review of current state-of-the-art
energy measurement solutions for computing systems, both
hardware-based and software-based. Furthermore, it presents
two parallel timelines: the evolution of computer systems
and the advancements in energy measurement technologies
within the same domain. We present a detailed taxonomy of
the solutions suggested in the existing literature on energy
measurement systems. We also present the limitations and
challenges of current energy measurement methodologies.

1 Introduction

With regard to the energy usage of computer systems, one
of the most significant changes is the increasing number of
data centers. In their Energy Efficiency Directive, the Eu-
ropean Union (EU) published that data centers consumed
76.8TWh of energy in 2018. This equals 2.7% of the total
energy consumption within the EU. Furthermore, they predict
an increase in energy consumption of 28% (98.6TWh) until
2030 which would equal 3.21% of total usage. [12]

However, data centers are only one step in the evolution of
computer systems that is characterized by a series of signifi-
cant technological breakthroughs and architectural changes.
From the onset of multi-core processors, the landscape of
computing has undergone transformations with far-reaching
consequences. These advances have not only enhanced the
performance and computational efficiency, but also increased
the energy usage of computer systems that are in use today.

To combat the energy consumption trends detailed in the
preceding paragraph, there is a growing interest in enhancing
the energy efficiency of computing systems. To accurately
examine the efficiency of two systems, comparing the en-
ergy consumed to complete an identical task allows for a
direct evaluation, with the system requiring less energy be-
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Figure 1: Energy usage of data centers in EU proportional to
overall electrical energy demand in EU (predicted data from
2020-2030) [11]

ing deemed more efficient. Therefore, we will analyze state-
of-the-art energy measurement systems in Section 4. They
promise accurate and fine-granular measurements of a com-
puter system’s energy usage, which are essential to reliably
ensure the efficiency of a system. Furthermore, we present an
overview of the limitations and challenges that these systems
face today in Section 9.

The demand for reliable, accurate, and fine-grained energy
measurements is further inflated under increasing pressure
from legislative bodies. From May 2024 onward, data center
owners and operators within an EU member state are required
to report their annual energy usage according to the EU En-
ergy Efficiency Directive. Consequently, the development of
precise methodologies for energy measurement has become
a highly relevant area of research and development in both
academia and industry.

To gain a comprehensive understanding of the function-
ing of modern energy measurement systems and their focus
on areas for improvement, it is crucial to examine the his-
torical development of computer systems and the concurrent
advancement of energy measurement technology. Initially,



the main approach for measuring computer systems involved
coarse-grained measurements that evaluated entire systems,
without differentiating between individual components or spe-
cific processes [13, 25, 35]. However, Section 3 details how
these approaches have evolved significantly, so that nowadays
it is possible to measure the energy usage of most components
of a system, such as GPUs or hard drives, at much higher fre-
quencies (e.g. [34]). This progression was facilitated by the
increased utilization of specialized hardware and enhanced
vendor support for direct measurement gathering from system
components.

Contributions: The contributions of this survey revolve
mainly around answering the following research questions:

RQ-1: How did the evolution of computer systems influence
the development of modern energy measurement solutions?
RQ-2: What are the current state-of-the-art energy measure-
ment systems?
RQ-3: What are their current challenges or limitations?
RQ-4: How does the field prepare for the future (IoT, Edge,
Large-Scale computing)?

Therefore, we contribute the following points through this
work:

• We offer a thorough examination of the interconnected
development of computer systems and energy measure-
ment infrastructure, with the aim of assisting the reader
to comprehend current research trends and areas of focus
in energy measurement.

• We present a detailed taxonomy of the solutions sug-
gested in the existing literature on energy measurement
systems for computer systems, both hardware-based and
software-based.

• Using this taxonomy allows us to discuss the differences
in quality between different energy measurement sys-
tems that aim to provide the same type of measurement.
Furthermore, it allows us to analyze the limitations and
challenges that different systems may face.

• In the final part of the survey (Section 10) we want to pro-
vide an outlook for the future by analyzing energy mea-
surement trends for emerging computer systems such as
Exascale computing infrastructure.

2 Related Work

There is existing research on energy measurement systems
that overlaps with this survey. However, most of the existing
work focuses on specific areas of the field, while our objective
is to provide a comprehensive view of the whole field.

Software-based energy measurement The most notable
and closest related work on software-based energy measure-
ment is performed by Jay et al. (2023) [22]. They conduct a
comparative analysis of software-based power measurement
solutions with a focus on CPU and GPU energy consump-
tion. Their classification of these solutions includes three
categories: Energy Calculators, Energy Measurement Soft-
ware, and Power Profiling Software. We diverge from their
classification and classify software-based power meters as ei-
ther based on specification or based on performance counters
(PMCs).

Hackenberg et al. (2013) [19] provide a comprehensive
overview of various methodologies applicable for power con-
sumption measurements. Their experimental validation con-
firms the simplicity and accuracy of common methodologies
for both AC and DC measurements. Furthermore, their analy-
sis of Intel RAPL and AMD APM reveals certain limitations:
providing energy data rather than power data limits the ap-
plicability of RAPL for detailed analysis, while AMD APM
demonstrates issues with systematic inaccuracies. We com-
pare their findings to more recent ones to answer the question
of whether Intel RAPL is a usable tool for energy measure-
ments.

Hardware-based energy measurement We compare
hardware-based energy measurement systems [2, 25, 26, 34]
with regard to their measurement frequency, accuracy, and
applicability.

Measurement quality We have identified three primary
factors that impact the quality of measurement. They are
derived from the collective analysis of various other studies.

Da Costa et al. (2017) [8] investigate the challenges and
biases associated with power measurements using power me-
ters and performance counters. This study provides significant
information regarding the overhead of power measurement
and its impact on the measurements themselves, the preci-
sion discrepancies between system-level and hardware-level
sensors, and synchronization issues in large-scale systems.
The accuracy of hardware-based and software-based energy
measurement systems is reported by [2, 19, 20, 22, 25, 26, 34].
Furthermore, our discussion about the importance of high tem-
poral granularity of measurements is motivated by [17,20,22].

Limitations & Challenges We present the limitations and
challenges of state-of-the-art energy measurement systems
which are covered by other work but not presented in a com-
bined manner.

We have analyzed the existing work on standardization of
the energy measurement infrastructure [3, 5, 7, 17]. Further-
more, we extend [38] by identifying more possible points of
heterogeneity in modern computer systems.
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3 Parallel evolution: Computing and energy
measurement

This section presents a comparative analysis of two paral-
lel timelines: the evolution of computer systems and the ad-
vancements in energy measurement solutions within the same
domain. The goal is to clear up how the rapid technological
progress in computing, from the inception of multi-core pro-
cessing to the latest trends in hardware specialization, has
influenced and been mirrored by the development of energy
measurement methodologies.

This comparison is motivated by the growing demand for
high-performance computing systems and the corresponding
need for more sophisticated energy measurement solutions,
as discussed in section 1. The energy measurement systems
mentioned in this section will be examined in more detail in
the following sections.

Figure 2 presents a joint timeline of advancements in com-
monly used computer systems that create a challenge for
energy measurement systems and the corresponding energy
measurement solutions that solve these challenges.

Clock Speed: Between 1993 and 2003, there was a no-
table trend in processor technology where clock frequencies
doubled approximately every 18 to 24 months [30]. This in-
crease in clock speed, allowing processors to perform more
operations within the same timeframe, necessitated an en-
hancement in the resolution of energy measurement systems
to accurately capture the power usage of computer systems.
This need for higher resolution marked a significant advance-
ment from earlier efforts in system power measurement, such
as those documented by Lapujade et al. [25]. In 2003, Isci
et al. [21] are able to achieved much higher resolution in
measuring the power usage of CPUs.

Multi-Core: The mid-2000s marked the onset of a transi-
tion to multi-core processors in mainstream systems, driven
by the thermal and physical constraints of increasing clock
speeds and reducing die sizes in single-core systems [24].
This shift significantly improved parallel processing capabil-
ities and overall computational efficiency [1, 14]. This mi-
gration necessitated an adaptation in energy measurement
systems to maintain their capability to measure energy infor-
mation for individual processes because these processes could
now run concurrently on one or more cores. One notable ex-
ample that allows for per-process energy measurements is the
Energy Consumption Library [7].

RAM: Concurrently with the advent of multi-core archi-
tectures, RAM technology also underwent several revisions.
These incremental updates led to substantial increases in clock
rate and bus rate (for instance, the bus rate from the original
DDR in 1998 to DDR3 in 2007 increased by up to 10 times).

Subsequent generations, such as DDR4 and DDR5, achieved
even higher clock and bus speeds. In contrast to the previ-
ous example, advancements in RAM technology have not
prompted substantial changes in energy measurement sys-
tems. The relatively low power consumption of RAM and
the enhanced efficiency of newer generations [10] have re-
sulted in limited focus on developing RAM-specific energy
measurement solutions. However, two notable exceptions are
Intel’s RAPL [9] and WattProf [34], which do address energy
measurement for RAM.

Cloud Computing: The mid-2000s introduced a pivotal
architectural shift in computer systems, particularly from an
energy usage perspective, with the emergence of cloud com-
puting. This period saw major industry players like Amazon,
Google, and Microsoft launching cloud computing-focused
products between 2006 and 2008, marking a significant tran-
sition in the landscape of computing infrastructure:

• Elastic Compute Cloud (EC2) released in 2006/2007

• Google App Engine (GAE) released in 2008

• Microsoft Azure released in 2008

[33] Today data centers account for 2.7% of the total en-
ergy consumption within the EU, with a predicted increase
of up to 3.21% by 2030 [12]. To effectively analyze the en-
ergy usage of facilities housing numerous computer systems,
energy measurement systems have had to evolve to support
distributed data collection. Early publications such as [37]
already present a measurement system that is scalable to multi-
node clusters, however their data collection rate is limited to
4 samples per second per node. Solutions such as PowerIn-
sight [26] improve upon this, by providing per-node mea-
surement infrastructure that offers out-of-band collection of
measurement data to allow for large scalability while still
retaining high measurement frequency and granularity. This
helps to accommodate the scale and complexity of data center
environments.

Hardware Specialization: A more recent trend in com-
puting hardware is the move towards hardware specializa-
tion for specific tasks. An early instance of this trend can
be traced back to 2006 with NVIDIA’s release of CUDA,
which facilitated the use of GPUs for general-purpose com-
puting (GPGPU) [28]. Furthermore, the development of more
specialized hardware accelerators, such as TPUs (from 2015
onwards [23]) for specific applications like machine learning,
exemplifies the ongoing trend towards task-specific optimiza-
tion in computing hardware.

As the diversity of hardware in computing systems ex-
pands, there is a growing demand for standardized, multi-
channel measurement infrastructure to accommodate this va-
riety. WattProf [34] addresses this need by offering a solution
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Figure 2: Timeline of computer system and energy measurement system evolution

equipped with sensor boards that are compatible with various
connectors and capable of supporting up to 128 measurement
channels.

Observation 1 (O-1): Over the past 30 years, the field of
computer system energy measurement has transitioned from
low resolution, system-wide measurements to high resolution,
component-specific methodologies. This evolution has been
driven by advances in (commodity) computer systems through
the development of sophisticated hardware and software tools
for high-resolution energy monitoring in real time.

O-2: Energy measurement in computer systems has be-
come increasingly important, primarily due to growing en-
vironmental concerns and the need for energy-efficient tech-
nology in response to escalating energy costs and regulatory
pressures.

4 Taxonomy of state-of-the-art energy mea-
surement systems

To effectively organize and provide a comprehensive overview
of the field of energy measurement systems, we present a
structured taxonomy in Figure 3. The primary focus of this
survey is on energy measurement systems; however, a thor-
ough understanding of these systems requires an examination
of the metrics used in measurement. Furthermore, to allow
for a structured discussion about the topic of energy mea-
surement, the exploration of the survey is divided into three
major categories. We selected these categories because the
majority of energy measurement tools we examined included
a description of their function within these three categories.

• Domain: The specific areas or components within com-
puter systems where energy measurement is applied.

• Methodologies: The various techniques and approaches
used to measure energy in these systems.

• Quality Criteria: The standards that define the quality of
energy measurement methods and measured data.

The subsequent sections will dive into each category of en-
ergy measurements, along with a discussion of the associated
metrics.

5 Taxonomy: Energy measurement metrics

Understanding the metrics used to present measured data is
crucial when discussing any type of measurement. In the
context of this survey, when we refer to energy, we specifi-
cally mean electrical energy, which is typically quantified in
kilowatt-hours (kWh). However, it is worth noting that some
publications may use joules (J) as the unit of measurement
because joules represent the general energy that can be con-
verted into electrical energy. The conversion between these
two units is given by the equation:

3.6MJ = 1kWh

Apart from electrical energy, there is another significant metric
for energy measurement known as (electric) power, which is
measured in watts (W). Power is also related to both metrics
mentioned above, and the relationship can be expressed as:

1W = 1J/s

Consequently, 1 kWh represents the amount of energy trans-
ferred over the course of one hour with a power output of
1000W.

Energy

MetricsMeasurement

Domain

Figure 3: The main focus points of this survey
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6 Taxonomy: Energy measurement domain

We are able to identify four different major domains that can
categorize current and past energy measurement systems for
the taxonomy in Figure 4. These classes are chosen based on
the measurement domains that we have observed in various
projects that were analyzed.

The evolution of measurement technologies has shown
(Section 3), that a significant evolution is evident in the mea-
surement domains of energy measurement solutions in various
projects. Initially, up until 2003, the focus of energy measure-
ment was predominantly at the node-level. Those measure-
ments can range from simple approaches, such as connecting
a wattmeter to each node’s PSU, to more advanced methods
like employing Smart PDUs that are able to measure per-node
data in serverracks in data centers. Subsequently, there was
a shift towards component-level measurement, where most
projects focus on CPU measurements with options to extend
the measurement coverage to some or all I/O components
like HDDs, GPUs, or networking hardware. Ultimately, the
scope expanded to encompass infrastructure-level measure-
ments, reflecting the broadening scale of computer systems
in data centers. At the infrastructure-level, energy consump-
tion is typically monitored through electric meters or similar
devices.

However, it is important to recognize that the measurement
domain of an energy measurement system is not restricted to a
single domain. Certain projects, such as the Energy Consump-
tion Library [7], demonstrate this by offering the capability to
implement a sensor at the node-level and the application-level.
This flexibility is important to allow for more comprehen-
sive energy measurement approaches that can accommodate
a wide range of monitoring needs across different levels of
computing systems.

7 Taxonomy: Energy measurement methodolo-
gies

Through combining the classifications of Jay et al. [22] and
Qi et al. [32] which focus primarily on software-based energy
measurement systems and the methodologies observed in var-
ious other projects, we create our taxonomy. This taxonomy
presents two methodologies that are employed today in energy
measurement systems: software-based energy measurement

Domain

Figure 4: Subdivisions of energy measurement domains

and hardware-based energy measurement. Both methodolo-
gies are further segregated in their respective subsections.

7.1 Software-based energy measurement sys-
tems

For the scope of this survey, energy measurement systems
that do not depend on the usage of additional hardware being
present in a system are classified as software-based energy
measurement systems. They obtain their measurement data
through estimations based on hardware specifications ( [1, 7,
21]) or through the energy measurement infrastructure already
available built into the hardware ( [5, 9]).

Estimation based on specification Estimation processes
can be based on the thermal design power (TDP) of the hard-
ware provided by the manufacturer (e.g., CodeCarbon). The
TDP specifies the maximum heat generated by a component
in a system. Although the TDP does not exactly give an esti-
mate on the CPU power usage, it can be used in conjunction
with information about the average CPU usage and total ex-
ecution time to obtain an estimation of the total CPU power
usage. [22]

Estimation based on performance counters (PMCs)
Hardware PMCs offer an alternative method to estimate the
energy usage of a system. These counters are specialized
registers that record data on hardware events, such as cache
accesses and misses, or CPU clock cycles and instructions. [7]

A vendor-agnostic example of an energy measurement
project that implements an estimator would be the Energy
Consumption Library [7] which is designed to estimate the
energy use of applications and / or machines. The sensors
used by the library are mainly based on hardware perfor-
mance counters mixed with operating system data. It allows
the estimation of energy usage on an application or machine
basis by either assigning sensors to specific PID’s or the whole
machine. The library already includes one linear estimator
and two dynamic estimators. The former estimator is based
on the CPU usage and minimum and maximum power con-
sumption of the machine and uses this information to estimate
a power usage. However, rather than being limited to these
estimators, the library is created to serve as a baseline with

Figure 5: Subdivisions of energy measurement methodologies
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easy extension options to allow for more sophisticated power
estimators and custom power sensors.

Measurement using model-specific registers (MSRs) It
is important to note that the support of manufacturers for in-
tegrated energy measurement circuits has improved in 2011
when both Intel and AMD include new measurement capa-
bilities in their respective CPU generations [19]. Those mea-
surement circuits are available to the kernel through model-
specific registers (MSRs) that provide detailed information
on the energy usage of the processor. Intel’s Running Average
Power Limit (RAPL) [9] and AMD’s Average Power Man-
agement (APM) are two vendor-specific tools that estimate
energy usage. These two tools derive their estimates by ac-
cessing the data stored in MSRs. [19] A third manufacturer,
NVIDIA, also introduces API commands one year later in
their NVIDIA Management Library (NVML) [29] that allow
one to obtain energy and power measurement data.

A different example using the energy measurement in-
frastructure that is already available in modern hardware is
the Energy Measurement Library [5]. This library leverages
hardware-specific interfaces such as Intel RAPL or NVIDIA
NVML to obtain power readings directly from the hardware.
It is developed to act as a middle layer between the hardware
and the software to allow architectural and experimental in-
dependence when measuring the energy consumption of a
system.

Most other software-based energy measurement projects
that have been introduced or updated after MSRs are available
include support for Intel RAPL (e.g., PowerAPI [3], Scaphan-
dre [31], Energy Scope [27], and Perf [36].

O-3: Support for MSRs is added to most software-based
energy measurement systems making it the state-of-the-art
methodology to obtain energy data from a computer system.

7.2 Hardware-based energy measurement sys-
tems

Hardware-based energy measurement systems, in contrast
to software-based approaches, require the use of additional
hardware to gather measurement data from computer sys-
tems. Within this category, a distinction can be made between
systems that utilize commodity hardware and those that re-
quire specialized hardware, such as purpose-built measure-

Figure 6: Subdivisions of software-based energy measurement

ment boards or FPGA-based technologies.

7.2.1 Commodity Hardware

Commodity hardware in this context typically includes ex-
ternal power meters and (smart) Power Distribution Units
(PDUs). Examples of such hardware include OmegaWatt me-
ters, Eaton power meters, and APC units. These devices are
generally used to measure the total energy consumption of
a whole system. However, they mostly lack the capability to
provide fine-grained, component-specific data. The perfor-
mance of these devices in terms of accuracy and granularity
can vary significantly depending on the specific model and
manufacturer. While they offer a more accessible and cost-
effective solution for energy measurement, their utility can
be limited by their inability to provide insights into both the
energy usage of individual system components and the total
system usage.

However, there is research, notably in 2003, that marked
a substantial improvement in measurement frequency com-
pared to the earlier coarse-grained measurements presented
in 1994 and 1996 ( [13, 25]). By employing a clamp amme-
ter connected to a digital multimeter, this study achieved a
granular measurement rate of 1000 power readings per sec-
ond with a resolution of 0.12W. However, this approach was
limited to measuring a single system component, specifically
the CPU. [21]

Furthermore, WattScope [18] presents an ML-based solu-
tion that utilizes node-level and rack-level power measure-
ment infrastructure that is widely available in data centers.
The authors claim that WattScope can provide application-
level power usage data by disaggregating node-level and rack-
level power measurements. However, their normalized mean
absolute error across 1,100 servers running on average 40
jobs is almost 10%. [18]

7.2.2 Specialized Hardware

Unlike using commodity hardware, some projects have em-
ployed specialized hardware for energy measurement. This
specialized hardware typically offers superior measurement
capabilities, targeting one or more of the different measure-
ment quality criteria detailed in Section 8.

Specialized
hardware

Commodity
hardware

Figure 7: Subdivisions of hardware-based energy measure-
ment

6



Section 3 comprehensively outlines the significant advance-
ments in methodologies for measuring energy and power con-
sumption in computer systems over time. This evolution is
evident in the development of specialized hardware designed
for energy measurement in these systems. Research for this
survey identifies the first example of custom hardware tailored
for energy measurements in host systems, dating back to 1994.
In this initial study, the energy usage of entire computer sys-
tems and their peripherals, such as printers and monitors, was
assessed using power meters combined with data loggers. In
particular, these power meters were developed in a unique way
and called "multiple outlet monitors (MOMs)". The MOM
was essentially an enhanced power strip equipped with mea-
surement capabilities that allowed monitoring of up to seven
devices simultaneously. [35]

Further advances in this area can be observed with the
publication of PowerMon and PowerMon21. Similarly to
the measurements using MOM from the previous paragraph,
PowerMon/PowerMon2 supports 6/8 measurement channels,
respectively. However, the transition to in-band monitoring
represents a significant shift in the methodology of energy
measurement. Unlike the MOMs, which are out-of-band mea-
surement devices positioned between the power source and
the Power Supply Unit (PSU) of the computer system, in-band
measurement involves placing the measurement hardware be-
tween the computer system’s PSU and its individual compo-
nents. This change in hardware placement enables monitoring
at the component level, allowing the collection of separate
measurement data for CPUs, hard drives, and GPUs, and thus
providing a more detailed and component-specific analysis
of energy consumption. Furthermore, PowerMon provides
measurements at a rate of up to 50Hz per channel, while Pow-
erMon2 enhances this capability, achieving up to 1024Hz on
a single channel or a combined 3072Hz across aggregated
channels. [2]

During the research for this survey, PowerInsight [26] is
identified as the next step in hardware-based energy measure-
ment systems, building on the foundations laid by Power-
Mon/PowerMon2. It notably expands the number of measure-
ment channels, increasing from the 6/8 channels offered by
PowerMon/PowerMon2 to 15 channels. A key feature of Pow-
erInsight is its ability to collect out-of-band data, enabling
centralized data aggregation from multiple PowerInsight units
through a control node. Although the exact measurement fre-
quency is not explicitly detailed, the authors of PowerInsight
assert a rate "faster than 1KHz" [26] indicating a similar level
of measurement granularity to that of PowerMon2.

Improving on the capabilities of PowerMon/PowerMon2
and PowerInsight, which are standalone devices with Power-
Mon2 and PowerInsight fitting in a 3.5" drive bay, WattProf
[34] introduces a distinct approach with its main monitor-

1The capabilities of PowerMon and PowerMon2 differ slightly; hence,
they will be referred to as x/y in the following text, where x represents
PowerMon and y represents PowerMon2

ing component. This component, called the "monitoring
board," is designed as a PCIe expansion card. Like Pow-
erMon/PowerMon2 and PowerInsight, WattProf is primarily
focused on delivering a system capable of fine-grained and
highly granular measurements. However, the WattProf moni-
toring board further expanded the measurement domain and
frequency, allowing up to 128 channels of sensor measure-
ments with a resolution of 12 kHz per channel. This design sig-
nificantly exceeds PowerMon/PowerMon2 and PowerInsight
in terms of data collection capacity, offering enhanced gran-
ularity and more detailed energy measurement capabilities.
Like PowerMon, PowerMon2, and PowerInsight, WattProf
achieved this through the use of highly specialized hardware.
However, the significant expansion in measurement domain
and frequency achieved by WattProf, compared to PowerMon
/ PowerMon2 and PowerInsight, is attributed to its use of
a Xilinx Spartan Field-Programmable Gate Array (FPGA)
for power monitoring. Unlike the microcontroller-based Pow-
erMon/PowerMon2 and the ARM-based PowerInsight, the
FPGA in WattProf provides a highly customizable platform.
This flexibility allows authors to tailor the central controller
programming specifically to their measurement needs, en-
abling more precise and extensive monitoring capabilities.

O-4: Over the last three decades, there have been significant
advances in specialized hardware for energy measurement sys-
tems. These advances have resulted in notable improvements
in both measurement frequency, which has increased from
0.2Hz to 12kHz, and applicability, with systems now capable
of supporting 128 measurement channels for one node, en-
abling measurement of multiple components simultaneously.

8 Taxonomy: Energy measurement quality cri-
teria

In Figure 8, the quality criteria for energy measurements are
categorized into three distinct sections, each addressing a
crucial aspect of measurement quality:

• Accuracy: The reliability of an energy measurement sys-
tem is highly dependent on the accuracy of the data it
captures. Accuracy is primarily influenced by the quality
and capabilities of the sensors used in the system, as well
as the frequency at which these sensors can collect data.
High accuracy ensures that measurements are reliable
and reflect the actual energy consumption of the system.

Figure 8: Subdivisions of energy measurement quality
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• Granularity: Measurement granularity is divided into
two subcategories: spatial and temporal granularity.

– Spatial Granularity: This refers to the system’s
ability to obtain measurements from specific com-
ponents of the system; it was previously defined as
the "Measurement Domain" in Section 6.

– Temporal Granularity: This aspect concerns the
frequency with which the measurement system can
provide data. Temporal granularity, like accuracy,
is dependent on the capabilities of the sensor.

• Overhead: Software-based energy measurement systems
are normally run locally on the machine being measured.
For reliable measurements, the overhead of the software
needs to be accounted for if it influences the measure-
ments. In contrast to this, hardware-based energy mea-
surement systems with out-of-band measurement capa-
bilities do not incur any additional load on the system
that is measured.

[20]
We derived these quality criteria by looking at the evalu-

ation sections of various energy measurement projects and
surveys that compared them. [22, 26, 34] However, we found
that the overhead aspect was often overlooked when evaluat-
ing projects.

8.1 Accuracy
The accuracy of energy measurement systems varies between
different projects, each with its unique specifications. Power-
Mon and PowerMon2, for example, claim to exhibit a worst-
case accuracy range of -6.6% to +6.8% [2]. PowerInsight, on
the other hand, presents an accuracy of ± 5% compared to
precision voltmeters and ammeters, and achieved a coefficient
of variation of 2.45% in an experiment involving a single
node High Performance Linpack (HPL) benchmark. [26] For
WattProf the authors claim an approximate total expected er-
ror of±5.65% in the worst-case scenario, while most measure-
ments should fall within a more accurate range of ±3.5%. [34]

Hackenberg et al. [19] conducted a comprehensive compar-
ison involving Intel’s Running Average Power Limit (RAPL),
AMD’s Average Power Management (APM), their own DC
power measurement solution, and AC power measurement.
They found that both Intel RAPL and AMD’s APM experi-
ence systematic issues under certain workloads that negatively
affect measurement accuracy. For Intel RAPL, they noted that
the measurements remain relatively reliable, with systematic
inaccuracies staying below 5%, as long as the energy data
polling frequency is kept below 20 samples per second.

In recent years, however, it appears that either the system-
atic issues with Intel RAPL have been addressed, or that tools
implementing Intel RAPL for energy measurement are not sig-
nificantly affected by these issues. Jay et al. [22] demonstrated

last year that various software-based energy measurement so-
lutions (such as PowerAPI, Scaphandre, Energy Scope, and
Perf) that utilize Intel RAPL can accurately measure the en-
ergy consumption of different benchmarks, closely aligned
with readings from external power meters. They also observed
that, for CPU-based benchmarks, a higher sampling rate tends
to result in a stronger correlation with the values from external
power meters. Even in the worst-case scenario, Perf, with a
sampling frequency of 10Hz, achieved a high correlation of
0.93 with the readings of the external power meter.

8.2 Temporal Granularity
Modern energy measurement systems exhibit varying lev-
els of temporal granularity, influenced by their architecture
and the aggregation of data across different layers. At the
lowest level, hardware measurements might be captured at
frequencies as high as 10kHz, but these measurements are
often aggregated at the node level and may be further aggre-
gated at the infrastructure level, resulting in a lower frequency
of measurements available to the user. The importance of the
temporal granularity exposed to the user varies depending on
the specific application of the energy measurement system
and the characteristics of the tasks being monitored. Tasks
that frequently change or have high variability require finer
temporal granularity to capture accurate energy consumption
data, whereas long-running tasks with stable system usage
may be adequately monitored with coarser granularity. [17]

The significance of temporal granularity on measurement
accuracy is underscored by a study from Jay et al. [22], as
discussed in the previous Section 8.1. This study illustrates
how lower temporal granularity can negatively impact mea-
surement precision. Hackenberg et al. [20] further support this
finding through their work with a SLURM plugin based on
IPMI for power measurements in a High-Performance Com-
puting (HPC) cluster. The standard IPMI power measurement
plugin, which is limited to 1 sample per second with a 3W
granularity for node-level measurements, was found to be
insufficient for accurate power monitoring. By developing a
custom IPMI OEM extension capable of 4 samples per second
and utilizing the maximum granularity offered by the sensors,
they demonstrated that increased temporal granularity and
measurement detail lead to more precise power consumption
assessments.

8.3 Overhead
Software-based measurement systems that are run locally on
the same hardware that is getting measured inevitably influ-
ence the outcome of the measurement. However, Jay et al. [22]
report an average energy overhead of sub 1% for their tested
software-based energy measurement systems which they con-
clude to be insignificant to the overall measurements. Ad-
ditionally to purely software-based systems, even hardware-
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based ones that do not utilize out-of-band data collection nor-
mally require a software package that is run locally to collect
the measurement data. However, newer projects like PowerIn-
sight [26] or WattProf [34] allow the collection of measured
data on dedicated remote monitoring machines which will
remove the overhead from the measured host system.

Furthermore, monitoring the PCs is not free and also lead
to some measurable overhead. Depending on the amount
and frequency of the monitored PCs the overhead can be
significant to the measurements accuary. With 240 measured
PCs with a sampling rate of 1 sample per second the worst
case increase in power consumption can be as high as 4%
according to [8]. However, the authors note that this increased
is measured on a system that is otherwise idle which boosts
the relative increase significantly. The absolute increase is
measured with 0.87W to 1.31W which will result in a lower
relative increase when the system is under load.

9 Limitations & Challenges

Accuracy In Section 8, we have already examined the fac-
tors that restrict the accuracy of measurements, such as the
quality and frequency of the data obtained from the sensors.
Additional inaccuracies in measurements may arise during
the conversion of analog to digital values and in subsequent
data processing procedures. To minimize these errors, the
most effective approach is to employ state-of-the-art measure-
ment hardware and analog-to-digital converters (ADCs) that
provide the most precise measurements and conversion ca-
pabilities. Additionally, it must be ensured that possible data
processing steps are clearly understood in relation to their
implications on the accuracy of measured data. [20]

Standardization Furthermore, the standardization of en-
ergy measurements to enable interconnected use of multiple
libraries remains an open area for research. We have identi-
fied the following approaches that aim to provide a unified
interface to users while supporting multiple libraries to obtain
data from the system:

• Energy Measurement Library (EML) [5]

• Power API [17]

• PowerAPI [3]

• Energy Consumption Library [7]

We found that the first two projects have not gained
widespread adoption and seem abandoned at the time of writ-
ing. According to Google Scholar, [5] has been cited 32 times,
and the repository [6] seems to have been inactive since the
last commit 4 years ago.

[17] has been cited 47 times according to Google Scholar,
but the only mention of a publicly available repository that we

could find is in a presentation from 2020 [15] and it appears
that the repository [16] is no longer available.

Furthermore, we are unable to find any available source
code or download for the Energy Consumption Library [7].

However, the third PowerAPI [3] project still has an active
and available repository [4]. It allows the usage of various
sensors as sources for energy measurements. They can range
from hardware power meters (e.g., Smart PDUs) to perfor-
mance counters (e.g., RAPL).

Heterogeneity As compute platforms become more diverse
and include additional hardware, such as accelerators, the
traditional model of a computer system consisting of a CPU,
GPU, hard drives, RAM, and expansion cards such as network
cards may no longer be sufficient. In the future, systems
could be much more heterogeneous, with different hardware
accelerators, possibly even on a single chip with large FPGAs,
combined with multiple general-purpose processors. This
trend towards heterogeneity is further exemplified by modern
CPU architectures like ARM’s big.LITTLE or Intel’s use
of P-cores and E-cores. Consequently, there is a need for
specialized measurement infrastructure that can accurately
capture the unique power profiles exhibited by this type of
hardware. [38] Projects like WattProf [34] have already made
progress in this area by utilizing specialized hardware built
on FPGAs to enable per-component monitoring. However,
further research is encouraged by us to develop support for
energy measurement on these highly heterogeneous systems.

O-4: We can observe that the challenges and limitations
that we identified are already being addressed by various
projects to varying degrees. Changes in computer systems
have created opportunities for research in the past (Section 3)
and continue to do so.

10 Conclusion and Future Outlook

Investigation into energy measurement systems for com-
puter systems has underscored the capability of achieving de-
tailed and precise energy measurements. However, significant
gaps remain, particularly in the realm of cloud environments
housed within large data centers. Despite scalable hardware-
based measurement solutions such as PowerInsight [26], gran-
ular energy measurement in cloud computing infrastructure
has not seen widespread implementation, possibly due to eco-
nomic factors and the intrusive nature of such measurement
systems. Projects like WattScope [18] aim to address these
challenges by leveraging existing infrastructure and advanced
software techniques, although they face limitations in accu-
racy.

The rapidly evolving hardware landscape, marked by the
introduction of TPUs, multiarchitecture CPUs, and the ex-
pansion into edge computing, IoT devices, and exascale data
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centers, presents additional challenges to the applicability
of current energy measurement methodologies. These devel-
opments require innovative approaches to capture reliable
energy data accurately.

The future advancement of energy measurement technolo-
gies should focus on creating non-intrusive, scalable, and
hardware-agnostic methods. There is promising potential in
software-based energy estimation models that utilize machine
learning and statistical analysis to bridge the current gaps. Fur-
thermore, the establishment of standardized energy measure-
ment protocols on a variety of computing platforms, including
next-generation architectures such as ARM and RISC-V, is
crucial.
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