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Abstract

The increase in connected IoT devices and the ever-increasing
demand for real-time processing, like Industrial IoT (IIoT),
and vehicular edge, have increased the need for computing
resources closer to the devices in the form of the edge. Posi-
tioned as a layer between the cloud and endpoints, the edge
aims to bring computational, storage, and network resources
closer to user devices, thereby reducing latency and doing
this in an energy efficient way. Distributing these resources
is done via a scheduler to efficiently allocate resources to
tasks depending on the set out requirements. This system-
atic literature survey will focus on scheduling in the edge.
The importance of the edge becomes more visible with mo-
bile devices in densely packed and offloading on IoT devices
that impose restrictions such as computing, mobility, delay,
and power constraints. Through a systematic literature sur-
vey, we present a comprehensive taxonomy of the design
space, dissecting existing paradigms, algorithmic approaches,
offloading types, and optimization goals.

1 Introduction

The cloud provides a large number of resources and high
bandwidth to execute large data-intensive tasks [25] but the
emergence of IoT devices [71] and mobile devices like smart-
phones and cars [57] that require real-time processing brought
forth a new concept, the edge. The edge is a new layer with
medium resources and bandwidth, but physically closer to the
endpoints. The endpoints are even more resource-constrained
and have the previously mentioned real-time requirements.
This edge, while previously considered a data consumer, is
increasingly becoming a data producer as well [71]. The
concept of the edge has been introduced as a middle layer
between the endpoints (user devices) and the cloud [35]. This
edge should move compute resources closer to the endpoints
to be in closer physical proximity to reduce network hops and
end up reducing end-to-end latency [68]. These 3 layers, the
cloud, edge, and endpoints, comprise the computing contin-

Figure 1: An overview of the compute continuum, showing
that endpoints are owned by users, and the edge and cloud are
owned by service providers inspired by [35]

uum [35, 36] as seen in Figure 1. This computing continuum
has been explored in several scenarios, such scenarios include
Multi-access Edge Computing (MEC) [77] for mobile devices
switching between different edge servers due to a changing
location, and offloading on IoT devices, which focuses on
offloading to nodes with higher computing capabilities [3].

Managing the edge and associated resources is a difficult
task and part of any resource management system. The edge
scheduler is central to this and is responsible for placing tasks
on the edge, conforming to the different requirements imposed
by the tasks. The IoT devices highlight some problems any
edge scheduler needs to solve: the mobility, computational
resources, and power restrictions of the endpoint devices. The
mobility of devices is especially important in dense edge net-
works where several edge nodes have an overlapping reach
and the moving endpoints can fall outside of the range of
the edge node while their tasks are being processed. Power
restrictions on battery/solar-powered devices also impose fur-
ther restrictions which can occur for sensor networks [10].
And the high bandwidth real-time applications are becom-
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ing increasingly prominent. Optimizing for these constraints
could result in reduced latency, improved scalability, more
efficient resource utilization, and better pricing schemes.

Many schedulers have been proposed using methods such
as reinforcement learning, particle swarm optimizations, and
heuristic solutions. Previous surveys have mapped the differ-
ent scheduler classes into a taxonomy, focusing on heuristic
and metaheuristic schedulers [8], stochastic Markov-based
schedulers [70], listing papers on approaches to different com-
ponents of a larger resource management layer [22,26], listing
the algorithmic approach of reviewed papers [30], optimiza-
tion strategies [67]. These differences are highlighted in Sec-
tion 2. However, the aforementioned taxonomies are talking
about a subset of scheduler classes. They also don’t show
the influence of certain infrastructure design decisions on the
design of the algorithm. So what scheduling classes do exist?
And what infrastructure are they designed for?

Edge schedulers are designed with goals like delay, power
usage, and cost minimization [8]. These goals can be quanti-
fied so that proper comparisons can be made. Different sched-
ulers can then be discussed in terms of their capabilities, some
of which the edge schedulers excel more at than others. The
differences in capabilities highlight certain trade-offs. One
often talked about trade-off is the execution delay versus the
power usage [55, 57].

This paper contains the following 4 contributions:

1. We design the process of conducting an in-depth sys-
tematic literature review in Section 3. This is done by
giving an overview of the steps and explaining the steps
in more detail.

2. We present a taxonomy of the components to build an
edge scheduler in Section 4. This taxonomy is broken
down into other taxonomies, focusing on existing system
models in Section 5, algorithmic approaches in Section
6, offloading types in Section 7, and optimization goals
in Section 8.

3. We perform an in-depth analysis of scheduling classes,
like heuristic or machine learning-based approaches, in
Section 6. We will target all found approaches in the
accepted papers, grouping them by major scheduling
classes and for the metaheuristics also depending on the
type of metaheuristic to keep an overview of the different
approaches.

4. We group papers according to their delay, energy, cost,
and QoS optimization goals in Section 8.

2 Related work

Current surveys differ from focusing on the algorithms driving
edge scheduling to the infrastructure and platform specifics
involved in edge scheduling. The scheduler is a crucial part

of the complete resource management which for the edge at-
tempts to achieve optimal computational offloading in terms
of execution delay or energy efficiency (or both). These sur-
veys discuss various parts of edge computing which have
overlap. The contributions of these surveys usually fall within
2 groups. They either present a taxonomy or a classifica-
tion of the domain space. However while these overviews
(taxonomies and classifications) can be useful on their own,
they are often hard to relate to each other. One often cited
survey on classifications is Mach et al. [55], which classi-
fies applications according to how much of the application
can be offloaded to the edge, knowledge of the amount of
data to be processed, and the dependencies between offload-
able parts. However, the paper comparison doesn’t classify
offloadability and instead focuses on energy efficiency and
execution delay. Another survey [57] groups the task model,
the offload approach, together with papers focusing on the as-
pects of energy efficiency and execution delay. This trade-off
between the execution delay and energy efficiency is often
mentioned in surveys with an emphasis on minimizing mea-
sured execution delay and power usage [55], highlighting
individual papers focusing on one or both as minimization
goals [65], or putting emphasis on measurability and bene-
fits [70]. Most taxonomies contain some categorization of
algorithms. The categorization of algorithms differs wildly as
some focus on the algorithm strategies [8, 30, 32, 44], while
others focus on algorithms that are different parts of resource
management in the edge [22, 26]. Such taxonomies are often
incomplete and typically focus on some classes of schedulers.
One taxonomy on resource management focuses on different
aspects of resource management like application placement,
resource scheduling, offloading, and more [22] which only
partially aligns with [26], although measurability was not
mentioned in [22]. Ghobaei’s [22] taxonomy is extensive but
doesn’t cover what decisions benefit which algorithms. These
4 groups (taxonomies, classifications, trade-offs, and algo-
rithms) are shown in Table 1 highlighting additional surveys
that focus on a subsection of the literature while it is also
interesting how the surveys relate to each other. The topics as
shown in Table 1 are based on what we found when review-
ing the survey. Topics like migration were excluded as we
focused on algorithms that rarely discuss migrations.

3 Research Methodology

Research on scheduling in the edge can be found in a wide
range of literature with multiple different keywords being
used for the same concept. It is important to first define how
we find, select, and analyze the literature in Section 3.1. We
then discuss the steps, elaborate on how this paper interprets
the steps, and on further restrictions imposed on the method.
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This survey ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mach et al. [55] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Shakarami et al. [70] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ghobaei-Arani et al. [22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mao et al. [57] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ren et al. [65] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Jamil et al. [32] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Belmahdi et al. [8] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kumar et al. [44] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Islam et al. [30] ✓ ✓ ✓ ✓ ✓
Hong et al. [26] ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison between this survey and existing surveys

3.1 Selected method

We compare 3 literature aggregation methods for a systematic
review that were found using Google Scholar using the query
"systematic literature review methodology". We extracted the
latest revision of all methods with more than 1000 citations
which resulted in 4 methods, [43, 62, 83, 84].

The paper on the snowballing method [83] is excluded
from the comparison as it focuses on the selection of liter-
ature based on an initial set. It can be used as an extension
of the available search methods, but it is far from a com-
plete method of conducting a systematic literature study as it
doesn’t elaborate on the process of finding proper seed papers.

All the methods use an iterative style. Kitchenham [43]
iterates back to the planning stage to revise the search depend-
ing on quality criteria that are set at a later stage. Okoli [62]
defines the iteration at a different stage as it focuses on de-
veloping the protocol, training the reviewers in an iterative
manner, and synthesizing data in an iterative manner to en-
sure completeness. Xiao [84] performs an iterative process to
define the problem definition, this iterative process is based
on ensuring the quality of work ensuring sufficient work is
reviewed and the workload is feasible.

Kitchenham [43] and Xiao [84] use 3 stages, planning,
conducting, and reporting. Okoli [62] introduces 4 stages,
planning, selecting, extraction, and execution. Selecting and
extraction are both part of the conducting stage while execu-
tion involves both the last step synthesizing of the conducting
stage and the reporting stage itself.

This survey will use the method from Xiao [84]. It was
chosen for its flexibility in the search criteria. Xiao [84] ad-
justs the search criteria based on quality and feasibility rather
than just on quality criteria as is done by Kitchenham [43].

Planning
1 Formulate the problem S1 & 2
2 Develop and validate the review protocol S3.1

Conducting
3 Search the literature S3.2
4 Search for inclusion S3.3
5 Assess quality S3.4
6 Extract data S3.5
7 Analyze and synthesize data S3.5

Reporting
8 Report findings S4-S10

Table 2: Overview of where the steps in the process of a
systematic literature survey of Xiao [84] are executed

Okoli [62] wasn’t chosen as the approach is more linear, not
revising the selection based on results later on in the quality
assessment. Table 2 shows where every step is executed.

3.2 Search the literature
Xiao [84] mentions 3 channels for literature search: electronic
databases, backward searching, and forward searching. We
will focus on electronic databases as the queries already pro-
vide hard search criteria that exclude additional papers from
being selected. The selected electronic database to execute the
query on is dblp [1]. Semantic Scholar [42] is used for further
filtering and processing of the papers found using dblp, but
isn’t included in the exploration of papers as its search rele-
vance algorithm isn’t exact matching like dblp does (dblp uses
prefix matching). The queries can be defined over the contents
of the title. The queries will only consider English publica-
tions. An initial query will be performed, later subqueries will
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be a subset of this initial query. The queries are executed on
the public dblp search API for publication queries [1], which
uses no API key.

The survey is structured as follows. An initial title search
is done to include all papers that are potentially related to this
survey. This initial search leaves us with the base query in
Listing 1. Later sections will focus on a subset of the base
query which could be more restrictions on the title. The base
query in Listing 1 is based on prefix-matching and searches
for one of ’sched’, ’resource manag’, or ’offload’ in the title
to restrict the search to scheduler-related papers and one of
’MEC’, ’fog, ’edge’, or ’cloudlet’ in the title to find papers
within the compute continuum.

There are 795 papers that were retrieved using the initial
query in Listing 1 using dblp. The dblp query was executed on
2023-08-20 and the results can be reproduced using the dblp
dataset 2023-08-01 [2]. We are left with 101 papers after all
the subqueries have been executed, the algo query in Listing 2.
This is reduced to 63 papers that were accepted. Papers were
rejected for several reasons as seen in Table 3. The rejection
reasons are discussed below.

• No access: The paper isn’t open access and institutional
access from VU Amsterdam or University of Amsterdam
doesn’t work.

• Failed inclusion: The paper didn’t provide sufficient in-
formation in the abstract and introduction to meet the
criteria laid out in Section 3.3.

• Failed quality assessment: The full paper didn’t meet the
criteria as laid out in Section 3.4.

• Unfinished: The paper was marked as unfinished by the
publisher, which means that the paper is either still being
revised or a case for the paper was published.

• Survey: The paper is a survey. Surveys will be discussed
in the related work in Section 2 and won’t be included
for analysis and synthesis.

• Thesis: Theses aren’t as they haven’t been accepted for
publishment.

• Retracted: The paper was retracted by the publisher. The
reason for the retraction won’t be discussed in this re-
view.

SELECT ALL p a p e r s FROM dblp
CASE INSENSITIVE MATCH
( sched | r e s o u r c e manag | o f f l o a d ) i n t i t l e
AND (MEC| fog | edge | c l o u d l e t ) i n t i t l e

Listing 1: Initial dblp query
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Algo Listing 2 11 16 1 1 1 1 1

Table 3: Overview of the amount of papers rejected by reason
for all subqueries

SELECT ALL p a p e r s FROM i n i t i a l que ry
CASE INSENSITIVE MATCH
( a l g o ) i n t i t l e

Listing 2: Algorithm subquery

3.3 Search for inclusion
Next, the search for inclusion will review the abstract and
introduction of all the selected papers. This is done over the
chosen subset in Section 3.2. A paper will be rejected if the
main findings aren’t in scope after reading the abstract and
introduction. Whether the findings are within the scope of
the query will be defined below with the subqueries goals in
mind.

• Algo Listing 2: It is important that it is immediately
clear what type of algorithm is proposed in the paper. It
is also handy if an analysis is performed against well-
established algorithms for the task at hand which should
also be clear from reading the abstract and introduction.
The problem statement and setup should be mentioned
in a generalized form and can later be expanded upon
in the paper. So the requirements for the abstract and
introduction are as follows:

– Mentioned the used algorithm for scheduling.

– Mentioned the edge model and assumptions made
about the model.

3.4 Assess quality
The last step in selecting papers is assessing the quality of the
papers that have made it this far. This analysis is performed
over all the text, excluding appendices. The quality assess-
ment will be based on the contributions, and the statements
made. This step targets potential ambiguity that becomes clear
later in the paper and ensures that the focus stays on the edge.
It excludes papers that happen to not discuss the edge or al-
gorithms upon further inspection. The criteria were based
on the Algo Listing 2 as this query focuses specifically on
algorithms for schedulers in the edge.
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3.5 Analysis
All selected papers will be analyzed by their statements, tables,
graphs, and figures. Findings will be synthesized into this
systematic literature review. The analysis is elaborately broad
and discusses a wide range of different edge models, used
algorithms, offloading types, and optimization goals.

The analysis is synthesized into a single taxonomy in Sec-
tion4. This is split into several subdomains. What is con-
sidered the edge model and its constituents is discussed in
Section 5. Then different algorithms used for scheduling tasks
from endpoint to edge to cloud is analyzed in 6. The algorithm
analysis was done for different paradigms, with different defi-
nitions of offloading and goals for optimization in mind. The
type of offloading will be discussed first in Section 7, group-
ing the analyzed offloading models under of the 4 categories.
The analysis of different edge models, used algorithms, and
definition of offloading allows us to further analyze the op-
timization goals under which the schedulers were designed,
these optimization goals are analyzed in Section 8.

The analysis and synthesis of the papers will be closed off
with the conclusion in Section 10. The conclusion will focus
on lessons learned and opportunities for edge scheduling in
the compute continuum.

4 Building a scheduler for the edge

Building a scheduler for the edge is made out of a few com-
ponents. The scheduler involves a System model as seen in
Section 5, the algorithm as seen in Section 6 is tailored to
requirements imposed by the problem model, and the problem
model can be split into how tasks are offloaded (or placed in
the edge) as seen in Section 7 and what the optimization goal
is as seen in Section 8. The system model aims to discuss
the layout of the edge, the heterogeneity of nodes, and how
communication lanes are set up. The problem model then dis-
cusses what type of users the system has, the makeup of tasks
they send in, additional requirements on these tasks, and what
the scheduler tries to achieve. This problem is solved with the
algorithm tailored to the problem which is discussed before
the problem model to get a better understanding of the scope
of edge schedulers, but in papers is usually done after the sys-
tem model and problem model or together with the problem
model. The analysis results in a taxonomy for edge scheduling
in the compute continuum as seen in Figure 2. This taxonomy
is scoped around the primary components of defining an edge
scheduler and is broken down into smaller taxonomies that
display more in-depth what the section encompasses.

5 System models

As seen in Figure 1 which was inspired by [35], we divide the
compute continuum into 3 parts. The cloud, the edge, and the
endpoints. The cloud won’t be discussed, although cloudlets

have partial overlap with the cloud as they are smaller clouds
in the edge layer. The edge can mean a lot of things, depending
on the setup. Endpoints are the users of the edge and are made
out of a wide range of devices with different requirements.

The cloud is connected to endpoints via the edge layer to
which endpoints connect. It is seen as one singular cloud
and provides high resources and high bandwidth, but has
a higher latency penalty. Some papers utilize the cloud to
offload computationally intensive tasks [40, 48, 58], but this
is often not discussed in detail.

The edge is often named the fog or Multi-access Edge
Computing (MEC, previously named Mobile Edge Comput-
ing). MEC is used for densely packed networks where the
users are mobile and the coverage area of the edge over-
laps as seen in Figure 5. Connection to the edge often oc-
curs via base stations, which are the wireless towers end-
points connect to. These base stations then either have a local
edge server [12, 48] or connect to slightly more distant edge
servers [94]. The edge can often be referred to using 3 scenar-
ios as seen in Figure 4.:

1. Edge node directly connected to the cloud [12,18,40,48,
58, 94].

2. Edge cluster that can potentially be connected to the
cloud [4, 16, 29, 33, 37, 45–47, 56, 66, 69, 73, 74, 76, 87,
88, 90, 93].

3. Multiple edge clusters are all connected separately to the
cloud [10, 23, 38, 54].

The endpoints consist of user-owned devices that are sensi-
tive to latency. This includes IoT [4, 10, 23, 29, 33, 37, 39, 66,
73–76,90], mobile devices [18,23,38,40,45–48,54,59,93,94],
vehicles [16,58], and UAVs [12]. The chosen endpoint affects
the QoS requirements the scheduler needs to follow. Mobile
devices are more likely to reside in a densely packed edge
network where they often switch to another edge server. IoT
has a lot of consistent requirements but needs to process large
quantities of data. Vehicles move around quickly and could
even move out of reach of the base stations. UAVs could suf-
fer from uneven distribution over edge servers due to their
location.

Another important aspect is where the scheduling deci-
sion is made. This scheduling decision is often made in the
edge [48], but can also be made by the mobile device [45,47],
or by the distant cloud [46, 58, 66, 69]. Another entity is
sometimes introduced to do the decision-making in the bro-
ker [29, 37], which is an observing entity that keeps track of
the state of nodes in the edge. Where the decision is made
decides whether the network is centralized or decentralized,
where centralized happens in case of the broker and cloud,
and decentralized when the edge and mobile devices need to
make a decision based on the limited available information.
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Figure 2: A taxonomy of the scheduling design space

6 Algorithmic approaches

The algorithmic approaches can be categorized into 6 major
categories as seen in Figure 6. By far the most scheduling
algorithms are based on metaheuristics as discussed in Section
6.2. This is followed by machine learning in Section 6.4 with
an even split between reinforcement learning in Section 6.4.1
and deep learning in Section 6.4.2. The last major group
is heuristics in Section 6.1. Both integer programming in
Section 6.5 and hyperheuristics in Section 6.3 only have one
algorithm instance in the reviewed set of papers. Concluding
our overview, we discuss hybrid algorithms in Section 6.6,
which are algorithms composed of 2 algorithms that work
together in stages.

This section aims to give a rundown of the potential ap-
proaches. How the models on which the algorithms were built
differ is explained in Section 5 and Section 7. The goal(s) an
algorithm optimizes for is further discussed in Section 8.

6.1 Heuristic
A heuristic is an approximation of an optimal solution based
on the available information. It is a static strategy, unlike

metaheuristics which move towards an optimum.

The heuristics can be divided based on the data and theory
used in the algorithm. One notable approach is the use of game
theory [13, 85, 91]. A two-stage offloading approach [85] can
be used for energy minimization by modeling the game as
a decision to offload game participants with an associated
cost. The offloading decision is balanced by adjusting the en-
ergy consumption ratio to reach an equilibrium. MUCRS [91]
is the multi-user computing resource scheduling algorithm
based on the big.LITTLE processor. In MUCRS the game
is non-cooperative so each user tries to minimize their own
energy usage. However energy efficiency will be low if all
users were to use the same approach, so there is an equilib-
rium of how many users can offload and how many cannot
based on the time and energy consumption requirements. An-
other non-cooperative game is presented which is solved by a
dynamic (QCOG-DG) and static (QCOG-SG) algorithm [13].
In QCOG each player can choose a computation offloading
policy combination that uses the same principal of cost as
MUCRS to reach an equilibrium. What makes QCOG [13]
interesting is that it simplifies a multiple node full offloading
problem using game theory.
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Figure 3: A taxonomy of the different paradigms in the design
space

Heterogeneous Earliest Finish Time (HEFT) is another
strategy that has been used on multiple occasions [45,87]. One
approach calculates a min-cut to minimize the overall cost and
then use HEFT to schedule the unassigned tasks after the ap-
plication partitioning [45]. Another approach uses HEFT as an
initial solution for the population of a fireworks algorithm [87].
However, HEFT doesn’t consider the non-crossover technique
[56]. Crossover is the additional cost of transfering a task
between processors. A Cross-Threshold value can be used to-
gether with EFT to overcome this crossover penalty [56]. Two
phases. In the first phase, the tasks are ordered based on the
heuristic method, heterogeneous earliest finish time (HEFT)
and the ordered tasks are scheduled by applying the improved
gaining sharing knowledge (IGSK) based algorithm [61].

Deadline and Energy-Efficient Task Scheduling (DEETS)
[46] is aimed at reducing energy consumption while meet-
ing the given deadlines. It does so via a priority queue. The
scheduling is done by earliest deadline first, smallest slack
time first, and smallest workload first, in that order. The slack
time is defined as the deadline minus the time to execute the
task.

Earliest Deadline First (EDF) has been proposed for au-
tonomous driving [16]. EDF is shown to benefit urgent task
while also being able to schedule more task compared to Best
Fit Replacement Scheduling (BFRS).

Multi-queue priority-based algorithm uses Shortest Job
First (SJF) with additional turn based queue for long task to
prevent starvation [20].

Novel multi-objective Fog scheduler for latency-sensitive
applications that focuses on service response time [33].

Three heuristic algorithms: minimum distance, minimum
load, and minimum hop distance and load (MHDL) [73].

Figure 4: 3 potential system model edge setups, endpoints to
edge to cloud, endpoints to edge cluster to cloud, and end-
points to edges to edges

QoS-aware downlink-scheduling algorithm, QuAS [80],
uses Proportional Fair (PF) algorithm to assign resources
based on the possible throughput, and the average current
resources for the users.

The last heuristic is Edge Cover Scheduling Algorithm
(ECSA) with greedy search [14]. It uses the edge cover queue
of a DAG. It uses a greedy task allocation method.

6.2 Metaheuristic

A metaheuristic can be seen as an optimized heuristic. It
can continuously run small variations of a heuristic to move
towards an acceptable solution. There are 3 main categories
as seen in Figure 7, Genetic Algorithms, Hill climbing, and
Swarm Intelligence.

Many schedulers are Genetic Algorithms (GA) [9, 10, 19,
24, 29, 40, 48, 49, 58]. Dynamic Multi-Objective Evolution-
ary Optimization based on Decomposition (DMOEA/D) [9]
is a GA that uses relocation of promising individuals and
a memory strategy to respond to new MEC environments.
MOEA/D-TLS [49] uses three-stage local search to enhance
its local search ability. An Evolutionary GA (EGA) with adap-
tive fitness [58] was proposed for vehicular ad-hoc networks.
The adaptive fitness of the EGA ensures that the Service Level
Agreement (SLA) is never violated [58]. One GA discusses
how to deal with dependant task and the additional energy and
latency associated with it [10], even going as far as to allow
dependencies on multiple edge servers. A GA can also be
enhanced using a hybrid approach with another metaheuristic
as done using a Flamingo Search Optimization (FSO) [29].
The best candidate is chosen each round and a crossover
is performed with the solution of the FSO over the remain-
ing candidates [29]. Learning Interactive Genetic Algorithm
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Figure 5: Potential overlap in densely distributed edge net-
work

Figure 6: A taxonomy of the algorithms used for scheduling

based on Edge Selection Encoding (LIGA-ESE) [24], uses 2
competing populations. The main contribution of LIGA-ESE
is the convergence efficiency from ESE. Another paper fo-
cuses on Multi-User-to-Multi-Servers (MUMS) and solves it
by Genetic Algorithm Based Distributed Offloading Strategy
(GABDOS) [48]. The selection phase groups users to a base
station with the highest preference which considers the physi-
cal distance and workloads [48]. Grefenstette bias based Ge-
netic Algorithm for MultiSite Offloading (GGA-MSO) [19]
uses Grefenstette bias to achieve faster convergence and opti-
mal partitioning. Non-dominated Sorting Genetic Algorithm
(NSGA-II) [40] uses a crowding distance to estimate the den-
sity of solutions. Hybrid ACO and GA [66]. Improved elitism
genetic algorithm (IEGA) [4], by dynamically altering the
mutations and crossover to help exploration and prevent local
minima.

Hill climbing is a method by which a local optimum can
be found by exploring the solution space with 1 particle. 17%

Figure 7: An overview of the reviewed metaheuristic types

of solutions do not support a one-climb policy [17], thus mo-
tivating the need for Tabu Search (TA) [59] and Simulated
Annealing (SA) [5]. TS is combined with a Fruitfly Optimiza-
tion Algorithm after the TS has finished to further improve
the solution [59].

The remaining approaches can be grouped under the swarm
intelligence optimizations [6, 7, 15, 21, 27, 29, 34, 37, 40, 41,
51, 53, 54, 69, 72, 74, 75, 87, 88, 90, 93]. The different opti-
mizations can be seen in Figure 8. A Flamingo Search Op-
timization (FSO) can be used to enhance a GA [29]. The
crossover was enhanced by selecting the second best candi-
date using FSO. An Ant Colony Optimization (ACO) for
real-time offloading (RTACO) [15] to achieve lower latency,
minimize makespan and optimize system load. Hybrid ACO
and GA [66]. Resource scheduling in mobile edge computing
using improved ant colony algorithm for space information
network [82]. Improved Krill Herd and Earliest Finish Time
(IKH-EFT) [41], it uses movement toward food, toward krill
population, and stochastic movement for the discovery of new
solutions. Multi-objective Artificial Algae (MAA) [72], it pre-
processes tasks into separate task-lists based on the number
of offspring so that the algorithm can focus on the dependen-
cies. An improved Firefly Algorithm (FA) outperforms many
metaheuristics, like EHOI, EHO, SCA, GOA, WOA, BBO,
MFO, and PSO. Opposition-Based Differential Fireworks Al-
gorithm (OBDFA) [88] for scheduling in a heterogeneous
edge. Fractional mayfly optimization, combination of GA
and firefly algo [52]. The main contributions of OBDFA are
the use of Opposition-Based Learning (OBL) and Differen-
tial Evolution (DE). The FA can also use HEFT to create
an initial population [87]. Energy-Aware Double-fitness Par-
ticle Swarm Optimization (EA-DFPSO) [53], uses a dual
fitness function and optimized inertia weight. EA-DFPSO
aims to reduce task completion time and energy consump-
tion. The first PSO in edge literature is in the context of
IaaS [69]. The PSO focuses on the heterogeneous nature of
cloudlets and aims at reducing execution time and cost. Slow-
movement PSO [93] uses slow-movement particle updates
to make solution exploration more efficient. Industrial IoT
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Figure 8: An overview of all reviewed swarm intelligence
optimizations

using discrete PSO [90] to obtain an task offloading solu-
tion with the smallest total energy consumption. Queue-based
Improved Multi-Objective PSO (IMOPSOQ) to target the
OMDT-TC problem [54]. Hybrid genetic algorithm and par-
ticle swarm optimization (GA-PSO) [81]. FPFTS: A joint
fuzzy particle swarm optimization mobility-aware approach
to fog task scheduling algorithm for Internet of Things de-
vices [38]. The Bees Algorithm (BA) uses local and random
global search to get to a good solution [40]. Hybrid Artificial
Bee Colony Optimization (HAWO) is optimized by integrat-
ing the Whales Optimization Algorithm (WAO) to overcome
the search process [7]. Grey Wolf Optimizer Whale Opti-
mization Algorithm (GWO-WOA) [21], GWO is used to find
optima while the WOA prevents converging on local optima.
A WOA was proposed that preserves privacy by aiming at the
problem of location privacy leakage caused by offloading [51].
Hybrid Bacteria Foraging Optimisation (HBFA), aiming at
minimizing completion time and maximizing resource utiliza-
tion in the edge [74]. A Hybrid Invasive Weed Optimization
(IWO) along with the Cultural Evolution Algorithm (CEA)
was proposed [27]. Two-step scheduling algorithm focusing
on deadline and priority using an enhanced artificial Jellyfish
Search Optimizer (JS) as an Improved Jellyfish Algorithm
(IJFA) [34]. Crow search algorithm to find a global solu-

tion [75]. Discrete Opposition Harris Hawk Optimization
(DO-HHO) [37], where each round increases the convergence
speed. Task scheduling method using population-based MFO
(Moth Flame Optimization) algorithm [23] to assign the opti-
mal number of tasks.

6.3 Hyperheuristic
Hyperheuristics are a higher level heuristic. It doesn’t operate
on the problem domain directly but rather works on a search
space of heuristics. It acts like a portfolio scheduler where it
aims to find the best heuristic or metaheuristic for the current
state of the edge.

One such hyperheuristic algorithm searches the metaheuris-
tic space by using a test and select phase [39]. The metaheuris-
tic space is composed of a Genetic Algorithm, Particle Swarm
Optimization, Ant Colony Optimization, and Simulated An-
nealing.

6.4 Machine Learning
Machine learning is often used to find a good ordering for
a set of incoming requests, and sometimes to determine the
best scheduler for the current situation (portfolio scheduler).

Multi-Aerial Base Station Assisted Joint Computational
Offload algorithm based on D3QN in Edge VANETs (MA-
JVD3) [11], uses SDN Controllers to sense global information
and enable efficient scheduling.

6.4.1 Reinforcement Learning

In reinforcement learning the agent learns how to behave
by performing actions and receiving rewards or penalties
in return. This can be done in simulation using different
workloads.

One approach uses 2 levels of reinforcement learning, 1
for local execution and 1 for remote execution [64]. Another
uses Double Reinforcement Learning Computation Offload-
ing (DRLCO) [47], which is an actor critic model with replay
memory. DRLCO uses an evaluate model to update the target
model which is used in the loss function. Asynchronous Up-
date Reinforcement Learning-based Offloading (ARLO) [50]
is another actor critic model that uses 5 sub-networks to in-
teract with the environment simultaneously. Brain-Inspired
Rescheduling Decision-making (BIRD) algorithm [60] is also
an actor critic model, but mimics the decision making model
of the hu7man brain to control voluntary motor activity to
ensure convergence. Q Learning [18] using a reward that in-
cludes the time and energy using the offloading and caching
decision.

6.4.2 Deep Learning

Deep learning is a form of machine learning inspired by how
the brain functions. It contains many layers, and also requiring
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more training.

Deep reinforcement learning in 2 tier MEC with heteroge-
neous edge [79] uses a trust mechanism to prevent criminals
from attacking the node with a virus. The trusted behaviour
is based on historical feedback and freshness of requests [79].
DRL PPO-based called IRATS [31] tries to minimize delay
while penalizing tasks that couldn’t finish before the dead-
line. DRL for cloudlets (IDRL) [5] alters the policy using
previous experience, converting DNN’s output to bianry ac-
tions using a Roulette Wheel Selection. DRL, DQN_GA [86]
which is similar to Q-learning, but approximates the Q-value
using a neural network. Deep Reinforcement learning based
offloading decision (DROD) for Vehicular Edge Computing
(VEC) [28] using an improved deep deterministic policy gra-
dient to obtain the optimal decision for the optimal problem.
Multi-agent load balancing distribution based on deep rein-
forcement learning, Distributed Task Offloading Multi-Agent
Load Balancing (DTOMALB) [94], by adressing the com-
petition and selfishness between users using a global load
balancing penalty. Deep-Q-Network [18] using a reward that
includes the time and energy using the offloading and caching
decision. Deep Monte Calor Tree Search (MCTS) splitting
Deep Neural Network (sDNN), intelligent Task Offloading
Algorithm (iTOA) [12], deciding the offloading action by per-
ceiving the network’s environment. Self-learning task offload-
ing and resource allocation algorithm (SLRTA) [78], uses a
weighted reward to balance the response time and energy con-
sumption trade-off. Deep Deterministic Policy Gradient [92]
to optimize the phase shioft and amplitude of Reconfigurable
Intelligent Surface (RIS).

6.5 Integer programming

Integer programming is a mathematical optimization tech-
nique where the solution space is restricted to integer values.
It differs from linear programming in that it doesn’t use con-
tinuous variables, but rather discrete variables.

One scheduler that makes use of integer programming is
the Okita and Okita* schedulers [63]. Okita(*) first decom-
poses the scheduling problem on all currently uncompleted
jobs using integer programming into a series of one-shot
problems. These one-shot problems are then used to pick a
worker and transmit the data. Both Okita and Okita* are on-
line schedulers. Okita is a preemptive scheduler, while Okita*
is a non-preemptive scheduler to target the overhead intro-
duced by a preemptive scheduler. The proposed schedulers are
specifically aimed at unbiased distributed learning to reduce
training time [63].

ILP-based algorithm called load balancing aware schedul-
ing ILP (LASILP) [73].

Figure 9: An overview of the types of hybrid algorithms in
the reviewed papers

6.6 Hybrid

Hybrid algorithms are the combination of two (or more) al-
gorithmic approaches in the same decision-making. It differs
from hyperheuristics as seen in Section 6.3 in that it uses
multiple algorithmic approaches simultaneously as opposed
to picking a currently optimal heuristic. There are 3 hybrid
combinations as seen in Figure 9, Heuristic-Metaheuristic,
Metaheuristic-Metaheuristic, and Metaheuristic-ML.

Two approaches use a Heuristic-Metaheuristic combina-
tion. One such hybrid algorithm fireworks algorithm (FWA)
uses an initial solution using HEFT for its population [87].
Another uses the first improvement type pivoting rule to find
a local solution and crow search algorithm to find a global
solution [75]. This local-global search combination achieves
the benefits of both exploration and exploitation [75].

Four approaches use a Metaheuristic-Metaheuristic com-
bination. One approach is a GA that uses Flamingo Search
Optimization (FSO) to enhance candidates who were not cho-
sen [29]. This best candidate of the not chosen candidates
after going through FSO is then combined with the fittest
solution from the GA which results in more optimal solutions.
Another approach uses TS first and once no improvement is
found uses a FOA to further improve the solution [59]. The
last approach is the Grey Wolf Optimizer Whale Optimization
Algorithm (GWO-WOA) [21], GWO is used to find optima
while the WOA prevents converging on local optima. Hybrid
ACO and GA [66].

Two approaches use a Metaheuristic-ML combination. One
approach combines Q-learning with a hybridization of Arti-
ficial Ecosystem-based Optimization (AEO) and Arithmetic
Optimization Algorithm (AOA) [89]. The Q-learning is used
to hybridize the AEO-AOA [89]. Another approach uses a
CNN to classify servers as suitable, after which a modified
PSO picks the best server [76].
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Figure 10: A taxonomy of the types of offloading

Figure 11: The 4 identified types of offloading

7 Offloading types

Offloading strategies in edge computing are essential for op-
timizing resource utilization, enhancing performance, and
ensuring energy efficiency. The type of offloading depends
on the problem model. The problem model lays out the di-
mensionality of the edge layer, the number of users at the
endpoints, how many tasks can be offloaded to the edge per
endpoint, and whether dependencies between tasks exist. Us-
ing the task flow from the endpoint layer to the edge layer lets
us categorize the offloading using 4 types as seen in Figure
11, made of 2 groups as seen in Figure 10. The first group
is where a task can be offloaded. A task can either only be
offloaded to a single node (Single), or to multiple potential
nodes (Multiple). The second group is the granularity of the
tasks. A task is either a fully independent and separate chunk

that isn’t further decomposed into smaller subtasks (Full), or
a task is dependent and part of a bigger application where
a task can be offloaded to any node but might need to wait
for other nodes to finish if a dependency isn’t fulfilled (Par-
tial). The combination of the aforementioned 2 groups leaves
us with the 4 types: Single/Full (S/F), Single/Partial (S/P),
Multiple/Full (M/F), and Multiple/Partial (M/P).

Single/Full (S/F) offloading is when the full task is either
computed locally or on a singular edge node11. One paper
focuses on multiple drones that all can offload their data to a
single node [12]. UAVs upload their data to the edge server
only based on the base station they are connected to. A set of
base stations is connected to one edge server [12]. Another
paper focuses on multiple mobile devices that pick one edge
server [40]. The mobile device can then pick the mode, to
either send the task in full or partial. If a fog node is too
congested it propagates all tasks from a single user up to the
cloud [40].

Single/Partial (S/P) offloading is when a task is decom-
posed and computed partially locally and/or partially remotely
on a singular edge node11. One paper using S/F offloading
also supports partial offloading [40], but on congestion of
the edge server will propagate the entire task sequence up to
the cloud. The rest of the papers using S/P offloading decide
the offloading to the edge per task. One such paper looks at
a problem with multiple users, sending potentially multiple
tasks [18], each task is individually evaluated for offloading
to the edge. All users connect to a single base station that
is connected to one edge server where offloaded tasks can
be cached for efficiency [18]. Mobile devices can connect to
multiple base stations if these base stations overlap in cov-
erage area. However, this overlap doesn’t need a device to
choose between multiple base stations. One paper considers
the overlap of base stations, but lets the offloading destination
be dependent on the base stations the mobile devices happens
to connect to [48]. Offloading to a single node prevents the
communication overhead and simplifies the offloading cost
model [48], and if an edge server becomes overloaded it can
use the vaster resources of the cloud. The last paper of this
class has vehicles decompose tasks depending on their crit-
icality and originating service [58]. Tasks from the vehicle
can then be assigned to one edge server or propagated up to
the cloud depending on QoS requirements [58] as discussed
in Section 8.

Multiple/Full (M/F) offloading is when a dependent task
sequence is fully offloaded in the edge at one node (or locally)
but can be scheduled at multiple nodes11. One paper always
performs offloading, but the decision is rather where to offload
to [76]. Multiple servers are considered and the edge server
to offload to is chosen based on current storage, computing,
and RAM limitations [76]. Other papers also consider this
load balancing of resources to maximize the utilization [33,
73, 74, 90], but do this via delay optimization with resource
constraints. Some approaches are driven by the QoS, like
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Figure 12: A taxonomy of optimization goals

determining the offload location according to a task deadline
with an expanded set of offload locations when the assigned
location is over-constrained [16]. Others consider multiple
edge servers and try to get an optimal global result by trying
multiple solutions of task distributions [4,29,66,69]. Another
approach can be taken for mobile devices where the sequence
of task is summarized using its cost in terms of computation
and communication latency to select an appropriate edge
node [46].

Multiple/Partial (M/P) offloading is when dependent tasks
can be scheduled at several different edge nodes and the sched-
uler takes the amount of tasks coming from an endpoint into
account11. The most trivial case is when scheduling a DAG of
dependent tasks [6, 27, 45, 54, 56, 87], where varying cuts can
be made to distribute the DAG over multiple edge nodes, this
practice is often called workflow scheduling. When multiple
fog nodes compute dependent tasks it also becomes important
to calculate how long a task must wait for its dependent part
to finish. The bandwidth between fog nodes is often taken
into account to account for wait time [10, 23, 47, 94]. Another
approach performs the placement of tasks entirely in the edge,
where the endpoint sends its task to its closest edge server
and the edge server can then offload it further using a central
controller [88, 93]. When edge nodes are more sparse and the
location of the base station becomes more important it could
be done to divide the edge resources into regions directly
connected via a broker [37, 38].

8 Optimization goals

An edge scheduling algorithm is designed with a certain op-
timization goal in mind. These optimization goals are multi-
faceted, aiming to address the unique challenges and require-
ments of the edge. We will discuss the 4 major groups, and

Figure 13: Measurement scopes for energy and cost optimiza-
tion goals

Figure 14: Differences in delay definitions

talk about the combination of the optimization goals. The
groups are as seen in Figure 12.

• Delay: a time/latency measure in seconds or cycles as
seen in Figure 14.

– End-to-end (E2E) latency: total time to execute a
single task as measured from the endpoint [18, 23,
33, 40, 48, 56, 94].

– Makespan: total time to execute a sequence of tasks
as measured from the endpoint [4, 6, 23, 29, 37–39,
45, 47, 74, 76, 87, 88, 90].

– Communication overhead: cumulative transmis-
sion time between endpoint-edge, edge-edge, and
edge-cloud [12, 23, 93, 94].

– Queue latency: time waited in the scheduling queue
[40, 74, 94].

– CPU execution time: time spent on CPU [12, 93].

• Energy: a power usage measure in kWh or emissions
defined over different scopes as seen in Figure 13.
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– Ecosystem energy usage: energy usage for commu-
nication and computation of endpoints, edge, and
cloud [47].

– User energy usage: energy usage for communica-
tion and computation of endpoints [10, 12, 40, 45,
46, 48].

– Provider energy usage: energy usage for com-
munication and computation of edge, and cloud
[4, 39, 90].

• Cost: a monetary measure derived from hardware or
operational cost defined over different scopes as seen in
Figure 13.

– Ecosystem cost: cost of hardware, infrastructure,
and maintenance for endpoints, edge, and cloud
[18].

– User cost: cost of hardware for endpoints [59] or
cost of offloading [29, 87, 88].

– Provider cost: cost of hardware, infrastructure, and
maintenance for edge, and cloud [6, 39, 56, 58, 69].

• QoS: requirements for a task or edge node.
ghobaei2020efficient

– Resource utilization: load balancing of endpoint
and edge resources [27, 33, 48, 73, 74, 76, 94].

– Network utilization: utilization of bandwidth [33,
38, 39, 80].

– Deadline: a set time before which the task [16, 23,
46,58,74,80], or group of tasks [6,29,69,75] must
be finished.

– Priority: based on assigned level or deadline re-
quirement [38, 56, 69].

– Security/Privacy: ratio of tasks that can be sched-
uled according to their security level [75, 93], or
tagging every task with a privacy level of public,
semiprivate, and private [73].

9 Threats to validity

There are 3 main threats to the validity of the survey.
First, we used the most recent release of the dblp dataset as

of writing the literature study seen in [2]. Other search engines
were disregarded as the datasets were older, hard to crawl,
or behind an API key. Semantic Scholar, was among other
available sources. Future surveys could focus on a broader set
of search engines also facilitating additional meta-analysis
and highlighting differences between search engines. (maybe
do a comparison of a subset as a way to justify, approach, or
motivate future research).

Second, grey literature was excluded as dblp primarily fo-
cuses on peer-reviewed publications.

Third, there are several different communities with differ-
ent perspectives which are all valid, but each field is biased
towards certain goals. This could cause problems generaliz-
ing.

10 Conclusion

Through a systematic literature review, we have presented
a taxonomy that spans paradigms, algorithmic approaches,
offloading types, and optimization goals, offering a view of
the current state of the art.

The challenges posed by the edge, such as mobility, compu-
tational constraints, and power limitations, require new inno-
vative schedulers. One such scheduler type that is underrepre-
sented but showed great promise is the hyperheuristics. This
could be extended into a portfolio scheduler that also includes
machine learning amongst the possible choices to best adapt
to the current state of the edge and jobs. Metaheuristics were
by far the most common algorithm type but recent schedulers
use machine learning almost as often. Another major chal-
lenge is the generalizability of the tested scenarios. Many
schedulers have a set amount of experiments which differ
greatly from paper to paper.

Such a diverse range of algorithmic approaches, from
heuristics and metaheuristics to machine learning techniques,
offer many solutions to specific scenarios and requirements.
The exploration of offloading strategies, whether single, mul-
tiple, full, or partial, provides avenues for optimizing resource
utilization and performance. Moreover, the focus on optimiza-
tion goals, including delay, energy, cost, and QoS constraints
ensures that the solutions are aligned with real-world demands.
Delay is usually included as a measurement but recent sched-
ulers focus more on energy savings or balancing energy usage
over the entire system.

In conclusion, the edge presents a promising future and will
establish itself as a mainstay in the computing landscape. This
will only be accelerated as more IoT devices, vehicles, drones,
and smartphones start requiring real-time high-bandwidth ap-
plications. This systematic literature review has brought a tax-
onomy on scheduling in the edge and expanded upon this with
further taxonomies on the paradigms, algorithmic approaches,
offloading, and optimization goals. The presented separation
of the system model, problem model (offloading and opti-
mization goal), and algorithm serves as a future blueprint to
establish a framework for a new scheduling algorithm.
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