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Abstract
Serverless and edge computing are two technological innovations
which have improved efficiency in computation across many fields,
in particular agriculture. Serverless computing allows developers to
write and run code without the need for servers or infrastructure,
while edge computing brings processing power closer to where
data is generated, reducing latency and improving performance.
Precise Agriculture is an example of how these two technologies
play a key role in improving efficiency and productivity. By lever-
aging serverless computing, applications can easily be developed
and deployed for automating tasks such as crop monitoring, irriga-
tion management, and livestock tracking. As a result, this enables
farmers to make real-time decisions and optimize their operations
based on data insights. Edge computing, on the other hand, allows
data processing at the edge of the network. This reduces the time
to process data and enables faster decision-making, which is crit-
ical in agriculture. For example, edge computing can be used to
analyze sensor data from soil moisture sensors, weather stations,
and drones, allowing farmers to make decisions about when to
plant, water, and harvest their crops. However, in order for both of
these technologies to work in such conditions like open fields with
restraint connectivity, there are some evaluations that should be
considered in the serverless structure. Therefore, this survey will
explore the different optimizations that can be applied with respect
to the serverless execution environment and resource management
in order to make computation more efficient at the edge.
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1 Introduction
Edge computing has been developed to extend the processing capa-
bilities from the cloud closer to where data is originated. This dis-
tributed computing model leverage smaller devices for performing
computation locally without the need of relying solely on central-
ized data centers or cloud computing. In this model, data processing
and analysis are performed on the edge of the network, near the
source of data, rather than sending it over the network to a remote
data center for initial processing.

This model allowed for a reduction in latency and network band-
width requirements, as data is processed and analyzed in the local
edge device. As a result, this can result in a faster response time,
which is critical for applications that require real-time data process-
ing, such as Smart Farming. Furthermore, this model also yields for
a reduction in cost associated with data transfer, since the entire
data does not have to be offloaded to the cloud.

Precise Agriculture is a subfield within Smart Farming. It is a
data-driven approach to optimize farming practices and increase

Figure 1: Multi field survey: Serverless, Edge and Agriculture.

yieldswhileminimizingwaste in resources. Edge computing devices
are able to capture important data such as irrigation, fertilization,
water level, pest control through multiple sensors deployed in the
field. This data can then be very useful for farmers to make inform
decisions about their crops.

However, conditions for edge devices deployed in agricultural
fields are generally bounded to low network connectivity or limited
power capacity. Smaller devices do not have the same computa-
tional capacity, nor the same connectivity, than in a large scale
cloud infrastructure. Furthermore, these devices are usually bat-
tery constraint, which means that they can only run for a certain
amount of time before replacing their power. Given these require-
ments, efficient computational mechanisms have to be considered
when deploying edge devices in agricultural fields.

Serverless computing is an efficient computational model that
fits the edge due to its lightweight execution environment. In gen-
eral, serverless allows applications to be developed and deployed
without the need to manage any servers or infrastructure. Further-
more, serverless can automatically scale resources up and down
depending on the current demand of the application. Lastly, server-
less functions are designed to event-driven. All of these benefits
pose a great opportunity for edge devices, allowing a more efficient
resource utilization during computation.

Edge devices have very limited capacity, specially in open agricul-
tural fields. Therefore, the question becomes: How can serverless
computing bring its benefits to smaller devices deployed in
precise agriculture? As a result, the purpose of this survey is to
first evaluate the different optimizations that serverless may have
at the edge, and second to study a use case in precise agriculture
Figure 1. Therefore, the following are the important questions that
should be considered throughout the remaining of the survey:
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• "What are the emerging topics of serverless and edge?"

• "What type of serverless applications can run at the edge?"

• "What are the opportunities for open research in both areas?"

• "How can serverless at the edge impact precise agriculture?"

Surveys are great ways for answering such questions, as they
explore the landscape of the current research to find state-of-the-art
solutions. In such alignment, the objective of this survey would
then be to present the different research areas that showcase the
impact of serverless in compute continuum. Therefore, the main
contributions of this survey could be outlined as followed:

(1) Conducting systematic survey. Explain the systematicmethod-
ology used for conducting the survey by gathering and col-
lecting research papers from serverless and edge computing.
The methods used were a combination of two approaches.
(A) Finding the current trend for open issues, and then se-
lecting the appropriate keywords. (B) Constructing queries
based on keywords, and using them on Google Scholar1
and Article Information Parser (AIP)2, (C) Extracting key
information from the results using a script (D) Building a
taxonomy to illustrate the main open research discussions.
This is discussed in further detail on section 4.

(2) Finding serverless optimizations at the edge. The aim of
this contribution is to provide state-of-the-art implemen-
tation and frameworks, that would enhance the execution
and deployment of serverless at the edge. The goal is to ex-
plore the isolation mechanism and resource management of
a serverless function, in order to find the optimizations that
should work best in edge devices. Among some of the points
are cold starts, resource utilization, distribution of workload
and energy efficiency. This is touched upon in section 6,
section 7 and section 8.

(3) Showcasing precise agriculture use case. The goal of this
contribution is to provide a clear picture of how serverless at
the edge could be applied in a real use case. Understanding
both of these concepts in a practical sense is key to grasp
the main benefits. As a result, the field of precise agricul-
ture is studied as a use case. This has become the industry
that have invested more in sensors for automating manual
processes. Therefore, there is still a lot of open research to ex-
plore in this area, where efficient computation can be carried
through serverless at the edge. This is specifically discussed
in section 9.

As per the rest of the survey, the structure will be presented
as follows. In section 2, Related Survey covers some of the main
surveys that are within the field of serverless, edge computing and
smart farming. Finally, the Conclusion of the survey is presented
in section 10, providing a basis for future direction and research.

1https://scholar.google.com
2https://github.com/atlarge-research/AIP

Surveys Serverless Edge Agriculture
Li et al. [40] X
Shafiei et al. [57] X
Leitner et al. [39] X
Baldini et al. [9] X
Xie et al. [69] X X
Aslanpour et al. [5] X X
Khanna and Kaur [33] X X
Cong et al. [17] X
Liu et al. [42] X
Mao et al. [45] X
Shi et al. [59] X
This survey X X X

Table 1: Related surveys in the field.

2 Related Surveys
Serverless and edge have been studied extensively in the past
through multiple literature surveys. Similarly, edge applications
in Precise Agriculture have also been studied to a great degree.
However, there has not been much work correlating these fields. As
a result, the main difference from this survey is the further analysis
on how serverless at the edge in agricultural.

A total number of ten surveys were collected during this phase.
Table 1 presents a list of related work along with three categories,
mainly associated with Serverless, Edge and Agriculture. It is worth
pointing out that all of this related work fulfill only one or two
relevant categories. This survey covers all the of three topics since
it incorporates two fields in Computer Science, i.e. Serverless and
Edge, and one in Agriculture. Nonetheless, these related surveys are
useful for understanding the open research challenges and visions
from each of these categories.

2.1 Serverless Surveys
Serverless is a new field, compared to Edge and Agriculture re-
search, that has developed tremendously over the past couple years.
Therefore, exploring the following literatures would provide more
knowledge in this computing architecture.

Baldini et al. [9] evaluates serverless computing architecture and
the different type of workloads that can be used, in particular burst,
compute intensive workloads.

Leitner et al. [39] contributes that serverless functions are a great
use case for integration with IoT sensor environments due to the
event-driven invocation model.

Shafiei et al. [57] brings interesting perspective on the perfor-
mance analysis by comparing different language runtimes, con-
tainer runtimes and memory limits in a serverless function.

Li et al. [40] presents architectural patterns that are used in order
to address the open limitations of serverless, e.g. cold-starts and
short timeouts.

2.2 Edge Surveys
Edge computing is a more mature field, compared to Serverless,
that has grown over the years. Therefore, it is beneficial to explore
other surveys, as they provide great insight in the open challenges
and opportunities in Edge computing.
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Shi et al. [59] presents challenges and opportunities in edge
computing in regard to programmability, naming, data abstraction,
service management, privacy and security.

Mao et al. [45] provides an insight on how device-to-device (D2D)
communication could be established as ways of mitigating limited
connectivity in an edge network.

Liu et al. [42] explores the different systems and tools for Deep
Learning to achieve a lighter and more adaptive machine learning
training at the Edge.

Cong et al. [17] dives deeper into computation offloading strate-
gies where it explores partitioningmobile applications into different
granularity levels.

2.3 Serverless Edge Surveys
Despite both fields evolving in parallel, there are a great number
of literature surveys that have explored the adoption of serverless
computing at the edge.

Xie et al. [69] aims to encapsulate some fundamental areas about
communication, coordination and scheduling that serverless func-
tions have to consider in a distributed edge environment.

Aslanpour et al. [5] provides an architectural description on how
serverless could be integrated in an IoT edge environment, with
key challenges and opportunities to explore.

2.4 Edge Agriculture Surveys
These surveys are important in order to understand more on what
type of requirements and systems are built using edge computing
in agriculture. There have already been a great number of literature
surveys that have evaluated such cases.

Khanna and Kaur [33] goes into details on how IoT can be incor-
porated in Precise Agriculture. Furthermore, it makes references
to the different communication protocols that can be found at the
edge when deployed in agriculture fields, which is an important
consideration to take into account in a distributed edge network
with limited internet connectivity.

3 Background
It is key to understand some background information about cloud,
edge and serverless in order to grasp the main idea of the survey.
In this section, cloud and edge computing are compared and con-
trasted based on some requirements, mainly Energy Consumption,
Resource Utilization, Latency, Throughput and Cost.

These requirements were primarily chosen to analyze where
computation should be carried, either at the edge or in the cloud.
There may be some processes that are more heavily energy con-
suming, which would better to be done in the cloud, for example.
However, there may be other cases where latency is a key factor,
which would then make edge the best viable option.

Moreover, the distinction of these metrics yields an interesting
discussion for how serverless could be optimized at the edge. Hence,
this section also provides a common knowledge of what serverless
is, and how it works.

3.1 Cloud Computing
Cloud is the delivery of computing services, including servers, stor-
age, databases, software and more. The purpose of this is to provide

Metrics Cloud Edge
Energy High Low
Scalability High Medium
Latency High Low
Cost Low Medium
Mobility Low High

Table 2: Metric comparison between Edge and Cloud

some knowledge in regard to the requirements already mentioned,
in order to determine where computation should actually happen.
The following metrics present more in detail the general character-
istics from cloud computing:

(1) Energy Consumption.Cloud is normally connected to a power
grid, which allows more flexibility as there is no immedi-
ate concern about powering the infrastructure. The energy
consumption can be related to the amount of computational
task required in a workload. Higher operations per workload
means a higher energy consumption.

(2) Scalability. Cloud provides more computational capacity to
scale their services either vertically, by using powerful ma-
chines in terms of CPU and Memory, or horizontally, by
adding more machines in parallel with the same capacity.
Therefore, computing resources can be easily provisioned or
de-provisioned to match the workload demands.

(3) Latency. Cloud generally have a high latency, depending on
the location where the request is made. Requests have to
travel across the network to the services in the datacenter,
which usually implies a delay in communication. In turns,
this affects the application performance.

(4) Cost. Cloud adopts a pay-as-you-go pricing model. This pro-
vides a great flexibility when dealing with scale, as there is
no need to make some upfront investment for resources in
advance. This can make cloud computing more cost-effective,
particularly with variable or unpredictable workloads.

(5) Mobility. Cloud is generally designed to provide centralized
access to resources and data. This means that failure on this
centralized access can potentially impact the availability of
these resources. As a result, cloud does not the capabilities
for location awareness.

3.2 Edge Computing
Edge computing is a distributed computing paradigm that involves
processing data and performing computational tasks at or near
the source where the request is originated As discussed previously,
the purpose of this section is to provide some general knowledge
on these requirements, in order to determine where computation
should actually happen. The following metrics present more in
detail the general characteristics from edge computing:

(1) Energy. Edge computing devices are generally constraint
by their short battery lifespan, which means that they can
execute certain amount of processing workloads. Unlike the
cloud, they are not particularly designed to carry heavy
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computation. However, they are designed for different kinds
of applications, such as smart homes.

(2) Scalability. Edge computing devices tend to have a limited
amount of computational capacity, which makes it more diffi-
cult to handle scalability. As a result, they are not well-suited
for workloads that are highly variable and unpredictable,
since it is more difficult to easily add devices in order to scale
up and down the computing resources.

(3) Latency. Edge computing devices have a lower latency since
computation is happening closer to where the data is gener-
ated. This can significantly reduce the delay time for sending
and receiving requests. As a result, it can be specially impor-
tant for applications that require real-time or near-real-time
responses, such as autonomous cars.

(4) Cost. While edge computing devices tend to be relatively
affordable, depending on their computational capacity, it
may require some upfront investment to be made, specially
when dealing with multi sensor and device deployments.

(5) Mobility. Edge computing devices tend to have a higher mo-
bility in terms of location awareness. Due to the decentral-
ized capabilities across multiple nodes, edge computing can
provide lower latency and higher bandwidth for real-time
processing applications.

Table 2 compares the different metrics previously mentioned
in both cloud and edge. The goal with this is to provide a visual
reference on how the cloud compares to the edge, specifically when
adapting to serverless computing.

3.3 Serverless Computing
Serverless is a computing architecture first introduced by Amazon
in 2014 with AWS Lambda. It allows developers to build and run ap-
plications without having to manage the underlying infrastructure.
The management of the infrastructure is left to the platform for
which serverless is running, which is responsible for automatically
allocating resources as needed, and dynamically adjusting the scale
depending on the workload. As a result, developers only have to
focus on writing and deploying code.

The basic entities for serverless computing are functions. Func-
tion as a Service (FaaS) is a serverless model in charge of executing
code inside a function, which can be invoked either by an event, e.g.
user HTTP requests [58], or a message queue. Functions are then
scheduled to available computation nodes, where they get executed
based on resource availability. Once the execution has ended, these
resources get released or reused for subsequent invocations.

Despite the many benefits from serverless, there are also some
shortcomings that need to be evaluated for the main discussion
serverless edge. Cold-starts is one of the most notable issues from
serverless. It is the delay that occurs when a serverless function is
invoked for the first time after a period of inactivity. This delay is
caused by the need to initialize the necessary resources before the
function can start executing [19].

Figure 2: Study Design Detail.

4 Study Design
The design of a survey is an important step to clearly specify how
the process of gathering related literature is conducted. Hence, the
main objectives of this section are: (1) to convey the process for
relating these three different fields, i.e. serverless, edge and agricul-
ture, (2) to present the process for collecting relevant contributions,
and (3) to provide an insightful taxonomy that shows the areas of
main discussion.

Figure 2 illustrates how the conduction process was carried.
Planning involved finding keywords and formulating research
questions. Execution entailed building queries and gathering the
results from AIP database. Extraction involved collecting the rele-
vant details from literatures and organizing the data in a tree-like
data structure.

4



Serverless Computing at the Edge in Precise Agriculture Literature Studies ’23, Feb, Amsterdam, The Netherlands

Figure 3: Current search trend for edge and serverless.

4.1 Planning
This section covers the initial steps for collecting research papers
about serverless, edge and agriculture. On a high level, this process
is done by looking at the current google search trends, creating a
funnel of keywords, and specifying the research questions.

4.1.1 Trend Analyzing the current trend in the field is essential
for getting a first insight on possible keyword combination. There-
fore, Google Trends 3 was the tool used to perform such analysis,
since it provided useful information about the timeline distribution
of a specific keyword.

Figure 3 shows the search trend have developed in these fields
(serverless, edge and agriculture) since 2014. Serverless is a recent
developing field (introduced in 2014), as compared to edge. As a
result, this survey review is evaluated based on this timeline.

Lastly, Google Trends provides a good set of combination of key
terms that can be used for search engines. Hence, they will be used
in the next stage of Keyword Analysis.

4.1.2 KeywordAnalysis Based on the collection of keywords
gathered from Google Trends, three keyword tiers are presented in
Figure 4 to show the different categories and description.

One Single Keyword (High level). This category of keywords is used
for searches that are mostly generic. These keywords are
helpful because they aggregate the first papers or literatures
that exist in the field. For example, they would be extremely
useful in the process of collecting related surveys.

Compound Keywords (Somewhat specific). This category corre-
sponds to a more specific set of keywords to search con-
tributions in literatures. For example, a combination of more
than one word is used to find interesting results about server-
less load balancing mechanisms.

Bundle of Keywords (Specific). This category dives deeper into
the combination of keywords, yielding the results for most
relevant/seed papers. These search terms usually involved
more extensive keyword combination, e.g. "serverless at the
edge" or "energy efficiency in serverless in IoT."

3https://trends.google.com/trends/?geo=NL

Figure 4: Funnel of keywords.

4.1.3 Research Questions The most important step for the
planning phase of the design is drafting research questions that
would ultimately reflect the main contributions of this survey [32].

These research questions take into account two important re-
quirements necessary for edge computation in agriculture fields.

• Energy consumption: serverless computation deployed on edge
devices has to be efficient in processing data, as this would
improve battery life of the device.

• Performance: how quickly and accurately data can be pro-
cessed and analyzed in real-time, with minimal latency and
bandwidth requirements.

There are two major research questions that correlates server-
less, edge and agriculture. From these, there are sublevel questions
that can be extracted. However, the sublevel questions ought to be
discussed in later sections.

RQ1

What kind of optimizations can be found in terms of en-
ergy consumption and performance (CPU and memory) from
serverless at the edge?

As previously discussed, there are some benefits that serverless
brings to edge computing devices. The point of this question is
to find solutions that could optimize computational execution on
smaller devices.

RQ2

How can serverless at the edge be implemented in the precise
agriculture field?

Since this survey incorporates a real use case study for how
serverless and edge could be applied in agriculture, it is essential to
also research relevant implementations done already. Therefore, the
main objective of this research question is to study the landscape
on how the agricultural field has changed with IoT edge devices,
specifically finding implementations using serverless computing.
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Query 1: SELECT * FROM publications WHERE (title ILIKE

’%serverless%’) AND (title ILIKE ’%edge%’)

Query 2: SELECT * FROM publications WHERE (title ILIKE

’%serverless%’) AND (title ILIKE ’%edge%’) AND (title

ILIKE ’%agriculture%’)

4.2 Execution
Once the trend has been analyzed, and research questions been
made, it comes the execution of the survey. On a high level, this
process is done to building the queries, making selection criteria,
and snowballing references.

4.2.1 Queries There were two data sources used during the
process, AIP and Google Scholar. AIP was the only database where
literatures could get extracted using SQL queries, since this is a Post-
gres database. Therefore, two fundamental queries were initially
made.

Q1- Serverless at the Edge. This query aims at retrieving research
papers that are more related to state-of-art implementations
or algorithms that can be applied for serverless functions to
execute efficiently at the edge.

Q2- Serverless at the Edge: Precise Agriculture. The goal of this
query is to find solutions for how serverless and edge work
in precise agriculture. Since this is a developing area, there
could be very limiting number of literatures. However, the
general idea is to get a field for how the industry is integrat-
ing sensing devices.

4.2.2 Selection criteria The selection criteria of this survey
can be based on an inclusion set of requirements that need to be
taken into account when narrowing the search. ?? provides an
overview and rationale of these evaluated criteria, which could also
be summarized as:

I1- Year. The year of publication is a consideration to make, spe-
cially when discussing serverless as a newer field compared
to the other two, edge and agriculture. Therefore, it is most
relevant to search for literatures from 2014.

I2- Database searches. The search engine is an important tool when
evaluating paper inclusion. Literatures have to be discover-
able in both engines in order to be considered in the survey.

I3- Research questions. Lastly, research questions are key factors
when taking into account the inclusion of a research paper.
Papers were evaluated mostly on Title and Abstract, looking
for important terms and definitions that would provide more
insightful information about the development of these fields.

4.2.3 Snowball This type of the systematic search involved
using the reference list of a paper or the citations to the paper in
order to identify additional literature [67] that may be relevant
to the fields. The process involved going through the references

Figure 5: Data extraction from AIP to LSDB.

Bibliography data Basic information about the literature
Author The list of authors
Title The title of the paper
Published Year The data the paper became available
Number of Citations The total number of citations
Categorization Specify more information about a paper
Tagging Assign a label to papers
Classification Rate paper based on relevance to topic
Indicator Identify seed papers by assigning icons
Findings Details on the proposed solutions
Main Contributions Summary of the paper

Table 3: Data extraction properties

from literatures found with the initial queries. While doing so, in-
teresting implementations were found and needed to be considered
accordingly. Hence, this process permits the flexible expansion of
the systematic search, since it explores other literatures based on
the citations rather than a query.

4.3 Extraction
In this phase of the study design process, important information
about the selected papers is extracted with the purpose of condens-
ing and synthesizing everything in one location. On a high level,
this phase is done by using a custom database in Notion4 , and by
building a taxonomy for main topic discussions.

4.3.1 LSDB This survey presents Literature Studies Database
(LSDB), which is a Notion database used for storing all the extracted
information from AIP and Google Scholar about relevant papers in
the literature.

Since the extraction process consisted of LSDB, an automated
pipeline was created in order to populate this database with the
literature findings. Figure 5 represents such pipeline, which consists
of the following components:

• AIP queries: are saved in a csv format. Then these files are
pushed to AWS cloud for integration with Notion.

• AWS S35: is used as a storage mechanism of the csv files.

4https://www.notion.so/
5https://aws.amazon.com/s3/
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Figure 6: Serverless Edge Taxonomy.

• AWS Lambda: gets triggered every time a csv file is put into
the bucket. This function preprocesses the csv file and make
HTTP calls to Notion API.

During the extraction process, there are groups of properties
that are mainly considered for each of the papers.

• Bibliographical Information. This refers to details such as Au-
thors, Title, Published Year, Number of Citations.

• Categorization. Once information have been collected, there
are three main categories that would apply to each paper.
Field which refers to a label assigned to a paper based on
its field. Category which refers to the general domain of
discussion within the field. Implementation which refers to
the methodologies used in the literature.

• Findings. Some high level information about the main contri-
butions are recorded, which would then be useful to quickly
recognize what the paper is about.

4.3.2 Taxonomy The final step in the extraction process cor-
responds to building a taxonomy with the relevant information
gathered from the different literatures studied. As a result, tax-
onomies are a great way to understand better the different subfields
in a literature, since they provide a structured and detail decom-
position of certain concepts [65]. Decomposition are great to look
at an overview of the possible and attempted areas that have re-
searched. Using this overview, researchers help get guided through
the process for finding feasible solution for these challenges. Hence,
the taxonomy presented Figure 6 makes it more visual the main
points for discussion in the survey.

5 Serverless Anatomy
Before diving deeper into the analysis of serverless at the edge, it is
important to have a prior knowledge of how a serverless function
is structured. Therefore, considering the limitations from server-
less, mainly the cold-start issues section 3, this section provides
an evaluation on what specific components need to be optimized
for efficient computation at the edge. This subsection covers two
areas in serverless computing, the architecture and the lifecycle of
a function.

5.1 Serverless Architecture
A serverless function is generally composed by four different layers,
as depicted in Figure 7. These layers can be defined as Virtualization,
Encapsulation, System Orchestration and System Coordination.

Virtualization Layer. Even though functions are meant to be server-
less, there is still a need for an environment in which they
have to be executed. As a result, this layer provides a secure
and isolated environment for functions to run on top of a vir-
tual machine (VM). The purpose of this VM is to provide the
necessary runtime environment, dependencies, and system
libraries required by the application to execute.

Encapsulation Layer. This layer deals with customized triggers
and executions, as well as provides data metrics collection
for communication and monitoring. Pre-warm pools are im-
portant to avoid any bottleneck of resources in this layer.
The aim of this layer is to dynamically pre-installing require-
ments for runtime execution.

SystemOrchestration. The orchestrator is the layer that binds every-
thing together. It achieves scheduling optimizations at three
different levels: resource, instance and application. Further-
more, they are in charge of maintaining a high availability
and stability of the function, by dynamically adjusting the
load as the computational workload changes.

System Coordination. The coordination provides the necessary
components for a function to integrate a series of services.
For example, Backend-as-a-Service (BaaS) is a term that
refers to APIs and SDKs that can be deployed with the func-
tion. These services provide storage, queuing services, trig-
ger binding, among other components necessary for the
lifecycle of a function.

5.2 Serverless Lifecycle
The lifecycle of a serverless function is a fundamental concept to
understand when putting it in context of edge. This will help in
identifying which individual stages can be optimized for smaller
computational devices.

There are multiple stages in which a serverless function goes
through its execution lifecycle. Figure 8 provides a more visual
representation of such a process, depicting how the execution envi-
ronment of a Lambda function evolves over time [68].
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Figure 7: Serverless Architecture [40].

Init Phase. During this phase, there are three important tasks to
consider in the lifecycle: (1) Start all extensions, (2) Bootstrap
the runtime, (3) Run the function’s static code. The Init phase
ends when the runtime and all extensions signal that they
are ready by sending a Next API request.

Invocation. When a Lambda function is invoked in response to
a Next API request, Lambda sends an Invoke event to the
runtime and to each extension.

Shut Down.When Lambda is about to shut down the runtime, it
sends a Shutdown event to each registered external exten-
sion. Extensions can use this time for final cleanup tasks.
The Shutdown event is a response to a Next API request.

6 Isolation Mechanisms
There are several isolation mechanisms implementations that have
been developed in serverless functions. This subsection first presents
an overview from all of these mechanisms, and second identifies
which of these mechanisms would be most suitable for the edge,
based on its requirements. As discussed in section 4, RQ1 breaks
down into multiple sub research questions. One of them is the
following:

RQ1.1

What kind of isolation mechanisms in serverless provide a
better energy consumption and performance results to edge
devices?

When discussing the adoption from serverless at the edge, it is
important to consider the efficiency in terms of performance and
energy consumption from each of these techniques, as they would
determine whether it is possible to deploy in smaller devices with

certain constraint capabilities, such as limiting battery and compute
capacity.

Efficiency in other words can refer to the startup latency the
function has. In particular, after a function performs the computa-
tion, there needs to be some ways of recycling the environment so
that subsequent functions can still execute without having to wait
to start all over again.

As a result, there are some isolation mechanism that allow for
this process to be lot faster. Figure 9 provides a visual representation
through a taxonomy, showing the different components that are
discussed in this subsection.

6.1 QEMU
Traditional virtualization mechanism have been applied to server-
less underlying infrastructure since the inception of FaaS as a com-
putational model for executing code. Even though this mechanism
provides a high level of isolation and flexibility, it is the least effi-
cient, from a performance perspective, because it has a very high
startup latency. Part of the reason is that VMs have high resource
overhead, which means high memory and storage footprint. On
the other hand, serverless functions are more suitable for a lighter
weight execution environments, since they are designed for quick
invocation and compute processing. Therefore, applying traditional
virtualization to a serverless environment would not be ideal at the
edge since this would imply higher execution time, which would
impact performance and energy consumption.

6.2 MicroVMs
MicroVM is a slimmed version of a virtual machine. It provides a
minimal, stripped down environment for single purpose applica-
tions and workloads. Therefore, it is designed to be lightweight, fast
and secure, with a focus on delivering high performance with low
overhead. Compared to a traditional VM, it consumes less amount

8



Serverless Computing at the Edge in Precise Agriculture Literature Studies ’23, Feb, Amsterdam, The Netherlands

Figure 8: Serverless Function Lifecycle [68].

of resources, which makes it susceptible for smaller devices that
have constraint capacity. Unlike containers, it provides a higher
level of security by separating the use of the kernel per serverless
function. In other words, each function runs its own microVMs,
which ultimately brings isolation benefits. At the moment, there are
two major microVMs that analyzed for performance optimizations
in serverless functions.

FireCracker [12] is an open source, lightweight virtualization
technology which powers AWS Lambda. It works by leveraging
Kernel-based Virtual Machine (KVM) hypervisor to create small
virtual machines, running a stripped down Linux kernel with only
the necessary drivers loaded [47]. Furthermore, it provides a more
secure environment by adopting a VM Monitor (VMM) based on
KVM [54].

gVisor [38] sandbox that helps provide secure isolation for con-
tainers, while being more lightweight than a virtual machine (VM).
The core of gVisor is providing a Guest kernel that runs as a nor-
mal, unprivileged process that supports most Linux system calls.
In other words, the idea is that each individual serverless function
is run on its own VM, completely isolating the main functionalities
from the underlying Host kernel.

These approaches work particularly well in cloud environments,
where performance at scale can be defined by the hardware ca-
pacity from the physical machine. However, similar to containers,
microVMs are not suitable for all type of edge devices, specially
those with a lower battery and computational constraint. Therefore,
other methods have to be explored when considering the abstrac-
tion layer that serverless should adopt at the edge.

6.3 Unikernels
Unikernel is a single-address-space machine image with a minimal
set of OS services compiled specifically to run only a single applica-
tion [63]. This approach is a natural fit for the FaaS model because
of the lightweight and strong security isolation. Unikernel provides
better performance to serverless functions by only supporting the

necessary libraries and drivers that functions actually need [29].
Furthermore, it typically uses a single kernel for both the guest
and host operating system, which allows for a small memory and
disk footprint. There are multiple open source projects that have
been studied to optimize performance of serverless functions. In
general, these can be grouped in two categories: language-based
and POSIX-based [49].

• Mirage OS 6 is a language-based library operating system that
produces unikernels by compiling and linking OCaml code
into a bootable Xen VM image [43].

• OSv 7 is an POSIX-based unikernel that provides a new guest
operating system designed specifically for running a single
application on a virtual machine [35].

The difference is that language-based unikernels offers higher
performance but with less compatibility with conventional sys-
tems, while POSIX-based allows more flexibility in the application
development, with the cost of a larger memory footprint.

Unikernels are specially designed for running in smaller IoT
devices. For this reason, finding performance optimizations for
serverless functions using Unikernels should be the priority of the
discussion. As a result, there has been some research development
in serverless platforms for edge devices.

UniFaaS [49] is a prototype edge-serverless platform which
leverages unikernels tiny library single-address-space operating
systems that only contain the parts of the OS needed to run a given
application to execute functions. The result is a serverless platform
with extremely low memory and CPU footprints, and excellent
performance. It has been designed to be deployed on low-powered
single-board computer devices, such as Raspberry Pi or Arduino,
without compromising on performance.

6https://mirage.io/
7http://osv.io/
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Figure 9: Isolation Mechanism Taxonomy.

6.4 Containerization
Container is another option for resource isolation in a serverless en-
vironment. It is a lightweight alternative to traditional Hypervisor-
based virtualization. It implements virtualization at the OS level,
instead of at the hardware level. Furthermore, containers are able to
achieve isolation through the use of cgroups and namespace, which
allow sharing the same OS kernel while providing a level of ab-
stractions between individual processes. Docker is one of the most
used container engine for packaging and deploying applications. It
provides RunC container runtime, which sets up the environment
with the respective libraries and system tools for code to execute
in isolated processes. However, further optimizations have been ex-
plored to make this container runtime more efficient in a serverless
environment.

SOCK [53] is a lean container proposed for serverless functions.
It provides an even lighter runtime environment since it removes
a lot of the redundant mechanism imposed by Docker containers.
Hence, this ends up being a great solution for functions that need
to run more efficiently in startup latency and throughput, two
requirements that directly translate to performance optimization.

A containerized serverless environment could be deployed at the
edge in smaller devices. However, this may not be suitable for all
cases of edge devices, because containers run at the OS level, which
means that their image would occupy some space in memory. As
a result, there are other solutions that provide a lower cold-start
latency, with the same performance level.

6.5 WebAssembly
WebAssembly is an open web standard for executing portable
binary-code in the underlying host environment. Although mostly
used for web application purposes, the specification for WebAssem-
bly has been adapted to work outside browsers, specially in a server-
less environment. The difference with this isolation approach is
that it completely bypasses the Linux kernel abstraction, optimizing
the performance and latency of a function execution time. To this
extent, there has been some research development, with the goal of
finding the most optimal execution time for a serverless function.

Isolation Strategy Startup Latency
QEMU Virtualization >1000ms
Docker Containerization 50ms - 500ms
FireCracker [12] MicroVMs 50ms - 500ms
gVisor [38] MicroVMs 50ms - 500ms
SOCK [53] Containerization 10ms - 50ms
UniFaaS [49] Unikernel 10ms - 50ms
Sledge [26] WebAssembly 8ms - 25ms
Faaslet [60] WebAssembly 5ms - 10ms
Table 4: Isolation Mechanism for Serverless at the Edge

Sledge [26] is a low-latency serverless execution at the Edge. It
enables a light-weight function instantiation and isolation environ-
ment which leverages kernel bypass to enable specialized serverless
function scheduling. The runtime focuses on efficiency of serverless
functions, and enabling strong spatial and temporal isolation of
multi-tenant function executions.

Faaslet [60] is an isolation mechanism for data-intensive server-
less computing. It guarantees strongmemory and resource isolation.
Furthermore, it supports stateful functions with efficient shared
memory access, and are executed by Faasm, a distributed serverless
runtime. To deal with cold-starts, Faasm runtime pre-initializes an
environment, yielding for a more efficient execution time.

WOW [25] is a prototype for executing Wasm workloads in
Apache OpenWhisk. It is extensible in terms of the Wasm runtimes
it supports, requires minimal modifications to OpenWhisk, and
seamlessly integrates Wasm special features such as capability-
based access control.

6.6 Comparison of Isolation Mechanims
In the discussion for adapting serverless at the edge, not all of
these virtualization mechanisms are going to be well suited in
smaller devices. It is crucial to consider that the requirements on
edge devices are totally different from the cloud, namely due to
the constraint of capacity and resources available. Optimizing for
lower response time, while maximizing on computing efficiency,
requires the right isolation mechanism in the architecture of a
serverless function. As a result, Table 4 presents a comparison of
the previously discussed isolation frameworks and strategies, with
their corresponding startup latency. From this, there is a noticeable
improvement in startup latency when serverless functions run in
either Unikernels orWebAssembly.

7 Resource Management
Resource management is another important layer that should be
discussed when trying to optimize serverless at the edge. Due to
some of the limitations already mentioned from edge computing,
there needs to be an alignment to find a suitable set of implemen-
tation or algorithms in serverless. As discussed in section 4, RQ1
breaks down into multiple sub research questions. The second one
is as follows:
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Figure 10: Resource Management Taxonomy.

RQ1.2

What kind of resource management components in serverless
provide a better energy consumption and performance results
to edge devices?

This subsection provides an overview of what components are
necessary to adapt in the resource manager from a serverless func-
tion so that it can run efficiently in smaller devices. Figure 10 pro-
vides a taxonomy which presents the breakdown of these compo-
nents.

7.1 Resource Scheduler
On a high level, a resource scheduler is the component that man-
ages the allocation, provisioning and scheduling of resources of a
system. The main goal is to ensure that all the running processes
get the necessary resources to run efficiently, while maximizing
system utilization. As a result, there are algorithms and heuristics
to determine the best way to allocate resources to tasks.

Resource scheduler becomes a crucial component in edge com-
puting devices due to their limited capacity. Due to the constraints
present in smaller devices, schedulers have to be designed to effi-
ciently manage the underlying resources of a smaller device, such
as CPU, memory and storage, while also balancing the performance
of process execution.

7.1.1 Components of Resource Scheduler at the Edge
Serverless functions can play a crucial role in maximizing the per-
formance of a scheduler, while minimizing the energy consumption.
However, it would be important to understand the main parts of
edge schedulers in order to identify in greater detail where server-
less could bring benefit to the edge environment.

(1) Resource Monitor. is responsible for collecting data on the
current state of resources available at the edge, such as CPU

utilization, memory usage, network traffic and other perfor-
mance metrics.

(2) Resource Allocation. is responsible for deciding how to allo-
cate resources to different services running on a device.

(3) Dynamic Provisioning. is responsible for moving tasks be-
tween different processing elements, with the ability to in-
crease or decrease the resource allocation.

(4) Policy Manager. is responsible for enforcing policies and
constraints on resource allocation and scheduling, in order
to avoid resource exhaustion from an individual process.

(5) Optimization Engine. is responsible for determining the most
optimal way to allocate and schedule resource based on
current state of the edge device.

7.1.2 Limitations fromResource Scheduler at the Edge
In addition to scheduler components explained, there are also cer-
tain challenges that arise at the edge. By presenting the following
limitations, there is a possibility to find certain gaps where server-
less functions could bring a positive value to the edge computing
environment.

(1) Dynamic environments. edge devices are often deployed in
remote or unpredictable locations. Therefore, a scheduler
must be able to adapt to these changes in order to adjust the
allocation of resources in real-time.

(2) Energy consumption. edge devices are usually bounded by a
battery lifetime. As a result, a scheduler must be designed
to minimize the energy consumption while ensuring the
optimal computational capacity.

(3) Heterogeneity. edge devices have different hardware and soft-
ware configurations. This means that a scheduler at the edge
need to be able to allocate computation to a wide range of
devices.

7.1.3 Serverless Resource Scheduler Resource manage-
ment in a serverless environment refers to managing the resource
requirements of an application workload, in other words spawning
of the sandbox environment, allocating the execution environment
and the runtime environment. The tasks carried by the scheduler
can be related to the lifecycle of a function (subsection 5.2).

Pigeon [41] creates a function-oriented Serverless framework
by introducing an independent and finer-grained function-level re-
source scheduler on top of Kubernetes8. The goal of this framework
is to minimize cold-starts (section 3) by implementing the sched-
uling functionalities from Kubernetes, but adapted to a serverless
environment. With function level resource scheduling, serverless
functions can be directly dispatched to pre-warmed containers,
which greatly reduces the resource overhead.

FnSched [62] is a function scheduler designed to minimize
provider expenses while providing acceptable request latencies.
FnSched enables autoscaling by elastically adding and removing
functions, based on the incoming workload. FnSched scheduler

8https://kubernetes.io/
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algorithm determines the number of CPU-share from active con-
tainers. In addition, it monitors the latency of applications in order
to increase the number of CPU-share capacity.

7.1.4 Edge Serverless Schedulers When deploying FaaS at
the edge, it is important to consider that scheduling decisions from
serverless platforms. This decision will depend on the workloads,
the size of data, data transfer costs over different network paths,
and the cost for setup time of resources at each location. As such,
the following studies have researched the resource allocation and
scheduling mechanisms in serverless computing, with the goal of
finding optimizations for edge environments.

Skippy [56] facilitates the efficient placement and allocation of
serverless edge functions on distributed and heterogeneous clusters.
It leverages the tight integration of the scheduler with a simulation
framework, in combination with existing multi-objective optimiza-
tion algorithms, to improve function execution time, network usage,
edge resource utilization, or cloud execution cost.

AuctionWhisk [14] proposed an auction mechanism to allo-
cate resources among multiple fog nodes in a decentralized and
self-organizing way. This approach allows for dynamic and effi-
cient allocation of resources to serverless functions, improving both
resource utilization and response time. This improves edge com-
putation by considering data location and available resources in
real-time to make optimal function placement decisions.

Aslanpour et al. [4] proposed resource scheduling algorithms to
place functions on edge nodes powered with battery and renew-
able energy sources. Their goal was to maximize the operational
availability of edge nodes while minimizing the variation thereof
without compromising the throughput. By doing so, they applied
sticky offloading and warm scheduling to reduce recurrent function
invocations.

Studying the different scheduling mechanisms from an edge
serverless function platform can provide a greater insight to per-
formance optimizations and the energy consumption necessary to
adapt to smaller devices. However, other components also play an
important role in providing low latency response times at the edge,
among one of is the load balancer.

7.2 Load Balancer
On a high level, a load balancer is a component within a resource
manager that is in charge of distributing traffic according to some
load balancing algorithms or policies. The main goal is to avoid
overloading resources by monitoring incoming traffic and distribut-
ing among the available computational capacity. Load balancers
at the edge are notoriously important for resource utilization in
smaller devices. But before diving deeper into how edge load bal-
ancers might work with serverless, it is worth to first note the
deployment models that load balancers may have at the edge.

7.2.1 Load Balancers Deployments at the Edge Know-
ing where load balancers operate can help determine optimization
techniques that can be employed by a serverless function to provide
a better performance and quality of service (QoS). Hence, this can
be classified into four different areas:

(1) Content Delivery Networks (CDNs). These are network of dis-
tributed servers or devices that are used to deliver content or

data to end-users or devices. Load balancers can be deployed
at various locations within the CDN network, such as edge
servers, regional points of presence (PoPs), or global PoPs.

(2) Internet Service Providers (ISPs). ISPs can deploy load bal-
ancers at the edge of their networks to distribute traffic
across their network of servers or devices, and to improve
performance and reduce latency for their customers.

(3) Multi-access edge computing (MEC). MEC is a network ar-
chitecture that enables computing resources and services to
be deployed at the edge of the network, in proximity to the
end-users or devices. Load balancers can be deployed within
the MEC architecture, to distribute traffic across the network
of resources and improve performance.

(4) Cloud Edge. Cloud providers may offer load balancers as a
service at the edge of their network, to enable customers to
distribute traffic across their network of servers or instances,
and to improve performance and availability.

Given that different deployments at the edge, it is crucial to study
the fundamental requirements that load balancers should consider
at the edge.

7.2.2 Requirements of Load Balancers at the Edge Un-
derstanding these requirements can help provide a framework for
how serverless functions should operate under such conditions,
while providing the performance and energy consumption opti-
mization that is necessary.

(1) Scalability. Edge computing is present in billions of devices.
Therefore, there is a high requirement to have very scal-
able load balancing capabilities that can distribute the traffic
spikes and accommodate increasing traffic demands.

(2) Redundancy. Failure is certainly a something to consider
when running systems that scale to billions of devices. There-
fore, high availability and redundancy are critical for load
balancers at the edge, as incoming workloads first interact
with them when coming into the system.

(3) Geolocation Based Routing. Edge devices are dispersed across
a wide range of locations. Therefore, there is a requirement
for load balancers to ensure that traffic is routed to the clos-
est available resource based on the location where the data
originated

(4) Performance. In order to handle a high volume of traffic,
generated from the billion of edge devices across a wide area,
it is necessary that load balancers use optimized algorithms
and policies that can efficiently distribute traffic with low
latency response.

As a result, serverless load balancing mechanisms have to take
these requirements into account when distributing the incoming
jobs into multiple devices.

7.2.3 Serverless PlatformLoadBalancers Load balancers
in a FaaS platform are designed to route queries and schedule func-
tions to achieve a high distribution between nodes in a cluster. As
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a result, serverless inherits some of the load balancing algorithms
and strategies that originated from previous virtual execution en-
vironments. Among some explained in this survey are: The Least
Connections and Locality Aware. The following literatures provide
more of an insight into how these algorithms interrelate in a server-
less platform.

PASch [6] proposed a package-aware scheduling approach, where
serverless functions are packagedwithmetadata that describes their
resource requirements and performance characteristics, such as
amount of CPU and memory. The algorithm proposed would then
place the incoming workloads to workers in a serverless functions
based on the metadata of these packages. The workloads would get
distributed to the least loaded workers available.

FaDO [61] proposed a new architecture for managing and de-
ploying serverless computing environments, implementing multi-
ple load balancing algorithms, The Least Connections and Round
Robin. The paper also describes how the FaDO architecture can be
used to implement load balancing across multiple edge and cloud
clusters to distribute request across multiple workers in a serverless
function.

Palette Load Balancing [1] proposed a new load balancing
technique that takes advantage of the locality of serverless func-
tions, with the goal of optimizing the distribution of workloads.
Furthermore, it suggested that algorithms, such as round-robin and
least-connections, do not work well for serverless computing envi-
ronments because they do not take into account the data locality of
the functions, which can be a differentiator in higher latency and
lower throughput.

7.2.4 Edge Serverless Load Balancers So far, the discus-
sion has been mostly on how to optimize load balancers mechanism
for serverless functions that work in the cloud. However, the main
idea is to see whether these same mechanisms could work at the
edge, given the requirements already specified.

GreenLAC [18] proposed a load balancer for serverless plat-
forms to distribute the workload among edge nodes based on re-
source availability and network conditions, taking into account
factors such as CPU usage, memory usage and network latency.
This uses an open-source component for AWS Greengrass 9 to
achieve load balancing and resource monitoring on edge devices.

LaSS [66] proposed a new approach to addressing the latency
issues in edge networks by ensuring fair share resource allocation
to avoid overloading the system. It takes a similar balancing ap-
proach than PASch in such a way that it gathers metadata about the
workload, primarily the size, and then distributes the load using a
weighted round-robin approach.

SEP [11] addressed the issue of centralized load balancing from
serverless functions in cloud environments. They proposed a new
architecture for serverless at the edge, consisting of two layers:
cloud layer, responsible for abstraction of serverless functions, and
a distributed edge layer, responsible for low-level compute and
storage of devices. As a result, an external load balancer would be
sitting between these layer, in order to allocate workloads evenly.

Load balancing mechanisms is one of the fundamental concepts
for distributing workloads based on certain algorithms. However,

9https://aws.amazon.com/greengrass/

Figure 11: Landscape of Computing Paradigms [3].

there is one final resource component that should be studied in this
exploration of serverless edge, that is offloading of computation.

7.3 Offloading
On a high level, offloading can refer to the process where some
amount of computational workload is moved from a local system
or device, to another in a different location. This term is generally
applicable within edge computing, since it plays a big factor in the
constraint of smaller devices. For example, if a device is not able to
handle the execution of a workload, it becomes more efficient to
move this workload into the cloud, where there are more resources
available. Therefore, offloading can yield for a better response de-
pending on certain parameters that should be evaluated.

7.3.1 Offloading Computing Models Computing models
are important to understand in order to grasp a better idea of how
offloading operates at different levels. Figure 11 provides a visual
representation of the different computing models studied in this
survey.

(1) Mist Computing (MC). This refers to a network of devices,
such as sensors, actuators, work together to process and
analyze data locally. From the figure, this Figure 11 could be
visualized in the IoT layer, where devices are responsible for
sensing and actuating based on triggers. An example of this
is a Raspberry-Pi10.

(2) Edge Computing (EC). This layer is usually where dedicated
gateways and routes are located, in order to act as an in-
termediate between the smaller devices and fog/cloud. The
edge can be connected to the cloud for further processing

10https://www.raspberrypi.org/
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and storage [30]. An example of this is Cloudlets11, who
bring the computation closer to the IoT devices while being.

(3) Fog Computing (FC). This is a higher layer, closer to the
cloud than to the IoT devices. Furthermore, it offers various
cloud services endpoints to offload their computation at low
latency [30]. An example of this is a micro-data center with
devices closer to the cloud to offload compute capacity.

(4) Mobile Cloud Computing (MCC). This layer provides a more
persistent and powerful infrastructure which is backed by
a higher computational capacity. As a result, it offers a vi-
able option for smaller devices to offload heavier workloads.
However, MCC is the farthest option to where the data is
generated, yielding a higher latency.

(5) Multi-access Edge Computing. Although not present in the
Figure 11, this classification is concerned with augmenting
cellular and wireless infrastructure with computing capacity
to process workload from multiple endpoints connected via
4G or 5G [30].

7.3.2 Offloading Directions Offloading can occur from the
cloud to the edge, or from the edge to the cloud, depending on the
specific use case and requirements.

Cloud-to-Edge: involves transferring some of the computing work-
load from a centralized cloud system to edge devices or gate-
ways located closer to the data source. This can help reduce
latency and bandwidth requirements, and enable real-time
processing and analysis of data.

Edge-to-Cloud: involves transferring some of the computing work-
load from edge devices or gateways to a centralized cloud
system for further processing, storage, or analysis. This can
help leverage the resources and capabilities of the cloud
system, such as data analytics tools, machine learning algo-
rithms, or high-performance computing clusters.

Evaluating this tradeoff would depend on the requirements and
use case of each individual system. However, this is relevant when
discussing the different offloadingmodels that can happen, specially
when running serverless functions in a more constraint computa-
tional environment.

7.3.3 Task Offloading Mechanisms As it turns out, there
are several implications in offloading which would be useful in
implementing serverless functions at the edge. The idea is to first
present these mechanisms and then understand how a serverless
function would fit into either of these tasks offloading.

(1) Application-Based Offloading. In this mechanism, the deci-
sion to offload is based on the application characteristics,
such as the computation intensity, data size, and latency
requirements. This can involve partitioning the application
into different modules or components, and deciding which
components to offload and to where.

(2) Context-Based Offloading. In this mechanism, the decision to
offload is based on the context of the mobile device, such as

11https://cloudlets.io/

the network conditions, battery level, and location. This can
involve using sensors and other contextual information to
determine when and where to offload.

(3) In-Network Offloading. In this mechanism, the decision to
offload is made by the network itself, based on various crite-
ria such as network load, traffic congestion, and proximity
to computing resources. This can involve using techniques
such as network function virtualization (NFV) [48], software-
defined networking (SDN) [13].

(4) Hybrid Offloading. In this mechanism, a combination of dif-
ferent offloading strategies is used to optimize performance,
energy consumption, and other criteria. This can involve
dynamically switching between different offloading modes
based on the current conditions and requirements.

7.3.4 Edge Serverless Offloading Now that some under-
lying concepts about offloading has been discussed, it is time to
apply this discussion in a serverless environment. To this extent,
offloading of FaaS in edge environments can be quite challenging
due to the requirements mentioned. Moreover, there are a number
of studies that have already optimized serverless functions to per-
form offloading for improving performance and lowering energy
consumption in edge devices.

NanoLambda [27] proposed a new architecture that enables
the deployment of serverless applications on a wide range of IoT
devices, from low-power sensors to high-end gateways, by provid-
ing an efficient and scalable way of offloading based on workload
evaluations in a serverless function.

LETO [36] proposed an approach that uses a combination of
serverless computing and energy harvesting to enable efficient
task offloading in IoT systems. Specifically, a dynamic optimization
algorithm is used to determine the optimal offloading strategy for
each computation task, taking into account the energy state of the
IoT device, and the network latency.

Baresi et al. [10] proposed a serverless edge computing archi-
tecture that leverages offloading to improve the performance of
low-latency applications. In this architecture, edge devices are re-
sponsible for collecting and processing data in real-time, and for
triggering serverless functions to perform additional processing
and analysis as needed.

Pelle et al. [55] proposed a dynamic deployment mechanism that
uses telemetry data to determine the optimal location for execut-
ing serverless functions based on network conditions and device
capabilities. The goal is to minimize the overall latency and energy
consumption of offloaded tasks, while ensuring high QoS.

Understanding offloading can be a very beneficial component
to optimize serverless functions at the edge, as this could lead to
lower response time and higher throughput.

8 Application Models
So far, resource management and isolation mechanisms have only
discussed as part of the adaption of serverless at the edge. However,
it is also important to have a better understanding of the types of
applications, the domains and the frameworks that are available in
serverless, and find how it could be deployed in smaller devices. As
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Figure 12: Application Models Taxonomy.

discussed in section 4, RQ1 breaks down into multiple sub research
questions. The third one is as follows:

RQ1.3

What kind of applications models in serverless are usually
deployed on edge devices?

This subsection provides an overview of with all the application
related concepts that are currently studied in serverless. While
doing so, the idea is to find existing optimizations for different
application models, with the goal of carrying computation more
efficiently in smaller devices. As a result, Figure 12 provides a
taxonomy which contains the breakdown of these components.

Eismann et al. [21] analyzed 89 use cases from different data
sources with the objective of finding areas within serverless that
could be further researched. Hence, their findings would be refer-
enced throughout this subsection in order to have a better picture
of the available application models in serverless. It would then be
the challenge to see how this could fit in an edge environment.
Serverless application models can be generally classified within
two different sub-branches: Types and Domains.

8.1 Application Types
There are several distinctive application types available in server-
less. They describe the kind of tasks that should be employed by
a function when executing incoming workloads. In general, these
tasks adhere to the design of serverless functions. For example,
jobs with long-running processes would not be best suited on a
serverless function, since a function is meant for quick and short ex-
ecutions. Similarly, the objective is to find the types of applications
for which serverless performs best and apply them to an edge envi-
ronment, taking into account the already mentioned requirements
at the edge.

8.1.1 API Composition Serverless functions have become
very popular for API compositions. Due to its scalable design, server-
less functions turn out to be a great option for building web inter-
faces that experience unpredictable and occasional spikes. FaaS is
great for burst workloads, where it can handle multiple concurrent
invocations from an endpoint at the same time. This corresponds
to 28% Figure 14 of the use cases studied in [21].

Use Case. a mobile application may use several different APIs to
pull the weather forecast based on various parameters, e.g. geolo-
cation. Therefore, instead of invoking individual endpoints, which
can be resource consuming, a serverless function could be used to
aggregate this data, saving energy in the device.

8.1.2 Stream/Async Processing This type is particularly
chosen for event driven processes that need to be executed as soon
as they arrive in a system. This type of application has enabled
event-driven architectures built on serverless functions for certain
use cases. Therefore, this is a great use case for edge computing.
This corresponds to 27% Figure 14 of the use cases studied in [21].

Use Case. a stream of events generated in a traffic light can
be backed by a serverless function. The function would then react
based on certain changes in the event, e.g. light changing from
red to green, allowing pedestrians to cross the street. Serverless
computing can be very useful in such cases where computation is
based on changes in events.

8.1.3 Batch Tasks The functionalities from FaaS can be ex-
tended to batch processing application types. Certain serverless plat-
forms, such as AWS Lambda, provide parallel execution, through
concurrency rate, integrated in their underlying engine. This al-
lows a number of functions to be executed in parallel at the same
time, improving performance and reducing processing time. This
corresponds to 23% Figure 14 of the use cases studied in [21].

Use Case. a customer analytics platform for a food chain com-
pany is trying to get some insights on the purchasing behaviors
of their clients. To do, the application needs to analyze millions of
data points simultaneously in order to find this behavior. It could
then leverage serverless functions to process such batches in a fast
and efficient manner.

8.1.4 Operating&Monitoring Serverless functions can also
be used to automate many of the tasks associated with operating
and monitoring applications and services. Due to their invocation
model, it becomes very cost-effective to use functions for checking
the status of processes in a system through health or log monitoring.
This corresponds to 20% Figure 14 of the use cases studied in [21].

Use Case. a function could be used to periodically check the
status of certain component from a system by performing a pinging
mechanism. If it captures any problems with the current service,
the function could either remediate it, by either invoking another
function responsible for such job, or informing the operator.

Overall, serverless functions are leveraged today for a variety of
workloads. As the field develops in the following years, there will
be an evolution in regard to the types of applications that serverless
can support. However, for the specific focus of edge computing,
the type of applications mostly used are for Streaming/Async
Processing.
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Figure 13: Application Domain Distribution [21].

8.2 Application Domains
Now that the types of applications in serverless have been laid
out, it is time to turn the focus towards the different application
domains for which serverless and edge can be used. These domains
will correspond to a particular type of application, depending on
the workload and the use cases. However, the most important dis-
cussion is to find how these domains are implemented within both
field, serverless and edge. Further, the goal is to arrive at some
relationship between both and the specific domain studied.

8.2.1 Web Services In Serverless Computing, Web Services are
usually implemented through an API Composition. The implemen-
tation of a web service in a serverless function can be done in a
variety of programming languages, with JavaScript and Python
being the most chosen [22]. Usually these web service functions
would be triggered through events, e.g. HTTP or MQTT. They
would carry certain business logic for processing workloads, and
then return a response to the client. They are generally lightweight,
with a relatively short execution time. This corresponds to 33%
Figure 13 of the use cases studied in [21].

In Edge Computing, Web Services are becoming increasingly
common due to the low latency and high throughput that edge
computing devices provide. It can be used to offload certain com-
pute tasks from a centralized processing unit, such a cloud, to a
local and smaller processing device. For example, edge computing
devices could be levered as CDNs to serve static files closer to where
the request is originated. This can yield a better performance by
providing a lower response time.

8.2.2 Big Data Analytics In Serverless Computing, Big Data
Analytics workloads are becoming more popular due to the ad-
vancement in performance and scalability from FaaS platforms. As
a result, FaaS has grown to support workloads beyond the light-
weight use-cases it was originally intended for, and now serves as a
viable paradigm for big data processing [37]. Flint [34] presented a
prototype Spark execution engine that is completely implemented
using AWS Lambda and other services. One of the challenges about
implementing Spark in serverless is redistribution of data across

Figure 14: Application Type Distribution [21].

the nodes in a cluster. Since functions are ephemeral [9], it be-
comes very difficult to perform such operations. However, Flint
takes advantage of distributed message queues to handle shuffling
of intermediate data.

In Edge Computing, Big Data Analytics workloads has been
adopted in a smaller scale compared to cloud, due to the resource
constraint capabilities already mentioned. However, it does pro-
vide the benefit of processing and analyzing data locally where
it originated. Edge devices can leverage the compute capabilities
when there is no network connectivity to the cloud. BEGIN [71]
proposed a framework for energy-efficient vehicular edge com-
puting that leverages big data analytics techniques to reduce the
energy consumption of vehicles and improve traffic efficiency. The
authors propose a system architecture that includes edge comput-
ing nodes installed in vehicles and on-road infrastructure, as well
as a cloud-based big data analytics platform for processing and
analyzing data.

In Serverless Edge Computing, Big Data Analytics has become an
area of research due to the underlying benefits from both serverless
and edge. Nastic et al. [51] proposed a novel approach to imple-
menting a serverless real-time data analytics platform for edge
computing. The proposed platform uses a combination of edge de-
vices and cloud-based services to enable real-time processing and
analysis of data streams generated by edge devices. The architec-
ture proposed consists of edge devices that collect and preprocess
data, a serverless computing platform that provides real-time data
processing and analysis, and a data store for storing and retrieving
processed data.

8.2.3 Machine Learning In Serverless Computing, this area
that has been adopted due to the scalability, cost-effectiveness and
reduction of operational complexity that FaaS platforms provide.
Carreira et al. [15] summarized the ML workflow consisting of
dataset preprocessing, followed by model training and finally by
hyperparameter tuning. These workflows have been traditionally
deployed in clusters of VMs, however there are drawbacks such as
resource management and over provisioning. As a result, serverless
provides the benefit of automatic scaling, fine-grained billing, and
simpler deployment and management that could be leveraged in
ML. LambdaML [31] explored the feasibility and performance of
serverless architectures for machine learning training. By doing
so, through experiments, it was found that serverless architectures
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Figure 15: Machine Learning Workflow [15].

can provide reasonable performance for machine learning training
tasks, but that there are a number of design choices that can im-
pact the performance of these architectures, such as programming
language or training methodology.

In Edge Computing, Machine Learning (ML) is becoming a viable
option for performing modeling, training and inference in smaller
devices. Despite the limitations already mentioned from edge de-
vices, ML workloads can still leverage the low latency and data
transferred that are offered in edge computing, achieving real-time
data processing performance. Furthermore, decentralization canML
workflows more robust by providing transient services during a net-
work failure [50]. Rocket [2] proposed a real-time video analytics
system which process live camera feeds from traffic interceptions in
Bellevue, Washington. The proposed solution generates directional
traffic volumes and raises alerts on anomalous traffic patterns. The
goal from this is to identify dangerous conflict patterns in order to
minimize accidents and traffic deaths.

In Serverless Edge Computing, Machine Learning has already been
employed for lightweight processing and analysis of data models
deployed in serverless functions at the edge. STOIC [70] proposed
a framework for executing ML applications in IoT-cloud settings us-
ing serverless architecture. The framework leverages an algorithm
for scheduling and placement of serverless functions in edge de-
vices and public cloud, specifically focusing on image-based object
recognition applications using TensorFlow 12. When the scheduler
at the edge controller receives a batch of images from open field
camera traps, it predicts the total response time for processing the
batch based on batch size and historical log data. Bac et al. [7] pro-
posed an architecture for deploying machine learning workload
as serverless functions in the edge environment. Evaluations were
performed to grasp the efficiency of this framework by studying
image classification with the MNIST dataset. Results can indicate
that the serverless approach can guarantee optimal response and
running time, reduce the end-to-end delay of the machine learning
application, and show its capability to support distributed machine
learning.

8.2.4 Internet of Things In Serverless Computing, Internet
of Things is perhaps one of the most notable domains for which

12https://www.tensorflow.org/

serverless functions can be used. IoT devices are continuously cap-
turing data from their environment and surroundings. This data
is usually sent to a microprocessor, which acts as a hub for per-
forming computation. Serverless functions can then be invoked
through events, very similar to the Web Service domain, to carry
certain processing based on the incoming workloads. Furthermore,
statelessness of serverless functions add portability for parts of
applications to be moved across the edge/cloud computing network
with lesser complications [44].

In Edge Computing, Internet of Things has become a recent field
due to the advancement in technologies in edge computing devices.
Some of the characteristics for which IoT benefits from distributed
edge are location awareness and low latency. Furthermore, edge
computing has the ability to support these requirements of mobility
and geographic independence, which are core in a multi sensor
deployment system [16].

In Serverless Edge Computing, the use cases for which both of
these field span is increasing rapidly. Today, there are a lot of de-
ployments for IoT setups computation using serverless function.
Due to the benefits of serverless functions, as previously pointed
out, there can be a lot of potential for smaller computation and light-
weight execution processing in smaller IoT devices. Furthermore,
this can present as an opportunity on how to apply energy efficient
computations in devices that have resource constraint capabilities.
As a result, there are multiple cases to analyze in the field.

Smart Factories are increasingly using connected devices and
sensors to collect large amounts of data about their operations. To-
day, 77%13 of manufacturers are strongly committed to deploying
sensors for their day-to-day operations. As a result, these opera-
tions can be used to automate production processes, reduce down-
time, and improve quality control. By deploying small, low-power
computing devices at the edge of the network, smart factories can
perform data processing and analytics tasks at the edge device. Fur-
thermore, serverless computing provides the scalable and elastic
computational execution that applications and services may require
in smart factories use cases. This can reduce infrastructure costs
and provide more flexibility in scaling up or down as needed. Some
practical examples in the manufacturing industry can be:

• Quality Control: Edge devices can capture visual data from
cameras and use computer vision algorithms to detect defects
and anomalies in real-time. Serverless functions can be used to
analyze this data and trigger alerts or initiate quality control
workflows.

• Inventory Management: Edge devices can capture data on in-
ventory levels in real-time and use machine learning algo-
rithms to predict future demand. Serverless functions can be
used to analyze this data and trigger alerts or initiate inventory
management workflows.

• Supply Chain Optimization: Edge devices can capture data on
supply chain operations in real-time and use machine learning
algorithms to optimize logistics and reduce costs. Serverless

13https://www.iiot-world.com/industrial-iot/connected-industry/report-on-state-of-
iiot-adoption-and-maturity-in-three-industries/

17



Literature Studies ’23, Feb, Amsterdam, The Netherlands Edgardo J. Reinoso Campos, Matthijs Jansen, and Animesh Trivedi

functions can be used to analyze this data and trigger alerts
or initiate supply chain optimization workflows.

Smart Cities are rapidly adopting sensing devices for precise
inform-making decisions based on all the data captured. However,
managing and analyzing this vast amount of data poses signifi-
cant challenges, which is where edge and serverless computing
can play a key role in enabling more efficient and effective data
processing and analysis. Serverless functions at the edge provides
the necessary computational power and flexibility to process and
analyze data in real-time, which is critical for making timely and
informed decisions. By deploying functions on edge devices at vari-
ous locations throughout a city, data can be collected and processed
locally, thus reducing the need to transmit large amounts of data
to a centralized location. Some practical examples of smart cities
can be:

• Traffic management: Edge computing can be used to analyze
traffic data from sensors and cameras at intersections to opti-
mize traffic flow and reduce congestion. Serverless computing
can be used to process and store this data in real-time.

• Air quality monitoring: Edge devices can be used to monitor
air quality in different parts of the city, and serverless com-
puting can be used to analyze this data and provide real-time
information to residents.

• Waste management: Sensors on trash cans and recycling bins
can send data to edge devices, which can use serverless com-
puting to optimize waste collection routes and reduce costs.

• Public safety: Edge devices can be used tomonitor for emergen-
cies such as fires, floods, or even gunshot detection. Serverless
computing can be used to quickly analyze this data and alert
first responders in real-time.

• Smart lighting: Edge devices can be used to monitor ambient
light levels and adjust street lighting accordingly. Serverless
computing can be used to analyze this data and optimize
energy usage.

Smart Farming has been adopting more sensors and IoT devices
to make their processes and cultivation of crops a lot more efficient.
Farmers are able to make more informed decisions based on the
real-time data that these sensors capture. However, similar to the
previous cases, scalability is an issue when dealing with a multi
deployment sensor IoT application. This can easily cause overload
on edge devices if efficient computational mechanisms are not taken
into account. Some practical examples of smart farming are:

• Cop Monitoring: IoT sensors can be deployed on the farm
to collect data on soil moisture, temperature, humidity, and
other environmental factors. This data can be processed using
serverless computing to provide real-time insights on crop
health and growth, allowing farmers to make more informed
decisions on irrigation, fertilization, and other crop manage-
ment practices.

• Livestock Management: Cameras can be used to monitor the
health and behavior of livestock, collecting data on factors
such as body temperature, heart rate, and movement. This

data can be analyzed using serverless computing to identify
potential health issues, such as disease or injury, allowing
farmers to take proactive measures to protect the health of
their animals.

• Predictive Maintenance: Edge devices can be used to monitor
the health and performance of farm equipment, collecting
data on factors such as engine temperature, oil pressure, and
fuel consumption. This data can be analyzed using serverless
computing to predict when equipment is likely to fail, allowing
farmers to schedule maintenance proactively and avoid costly
downtime.

• Precision Agriculture: Edge devices can be used to collect data
on soil conditions, crop growth, and weather patterns, which
can be analyzed using serverless computing to optimize crop
yields and reduce waste. For example, by analyzing data on
soil moisture and nutrient levels, farmers can adjust irrigation
and fertilization practices to maximize crop growth and reduce
the risk of over- or under-watering.

9 Use Case: Precise Agriculture
The main goal of this section is to provide a landscape on how edge
computing has done significant technical advances in the agricul-
tural field. The term Agriculture Technology (AgTech 14) is an
upcoming field that has been coined to certain agricultural prac-
tices that have been already modernized with some sort of edge
devices, such as IoT sensors. Therefore, it is crucial to evaluate how
serverless computing has fit in such edge environments within the
agricultural field. However, before jumping further in the discus-
sion, there are some shortcomings from traditional agriculture that
should be understood in order to grasp the full benefits of new
technology implementations or integrations.

9.1 Traditional Agriculture Shortcomings
Even though agricultural practices for crop cultivation have changed
over the last century, primarily due to the adoption of motor ve-
hicles, it is still a relatively slow moving field where technologi-
cal innovation happens sporadically. Therefore, this lack of rapid
change brings some shortcomings that should be studied in order
to highlight the benefits of edge computing adoption for precise
measurements.

• Inefficient use of resources: Traditional agriculture typically
relies on knowledge and approximation from farmers when
trying to apply water, fertilizer and pesticides to their crops.
This results in an inefficient use of resources, which can cer-
tainly lead to environmental damages.

• Lack of real-time monitoring and control: Traditional agricul-
ture often relies onmanual methods of monitoring and control,
which can be time-consuming and inaccurate. This can lead
to missed opportunities for early detection and intervention
in the case of pest infestations, disease outbreaks, or other
issues.

14https://www.mckinsey.com/industries/agriculture/our-insights/agtech-breaking-
down-the-farmer-adoption-dilemma
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• Limited data collection and analysis: Traditional agriculture
typically involves collecting data from a limited number of
sensors or devices, such as weather stations or soil moisture
sensors. This can limit the ability to collect and analyze data
on a more granular level, such as individual plant health or
nutrient levels.

• Difficulty in identifying and responding to changes: Traditional
agriculture can struggle to respond quickly to changing con-
ditions, such as changes in weather patterns or soil condi-
tions. As a result, this could lead to lack of adjustemnt in crop
management practices which can result in lower yields or
reduction in crop quality.

These are just a few examples of some of the pitfalls from tradi-
tional agriculture. Hence, it is clear that technology, specially edge
computing, can bring a lot of benefits to overcome some of these
challenges. However, there are certain requirements in the agricul-
tural field that edge computing has to take into consideration.

9.2 Agricultural System Requirements
Agriculture can be a very complicated sector to implement technol-
ogy, specially due to the limitations in network connectivity and
availability. Therefore, it would be important to lay some common
requirements that other literatures have addressed in their work,
particularly focusing on edge and serverless. The following are just
few of the many, depending on the types of systems that need to
be built.

(1) Low latency: Edge computing devices must be able to process
data quickly and efficiently to provide real-time insights for
timely decision-making.

(2) Energy efficiency: Devices must be designed to consume low
power to ensure longevity of the system and reduction in
maintenance.

(3) Connectivity: The edge devices in a multi-sensor IoT system
should be able to communicate with each other seamlessly
and with the cloud when needed.

(4) Data processing: Edge computing devices should be capable
of processing data from different types of sensors, such as
weather sensors, soil moisture sensors, and plant growth
sensors, and extract meaningful insights from the data.

(5) Reliability: Edge computing devices must be reliable and able
to operate without interruption, even in harsh environmental
conditions.

(6) Scalability: Edge computing devices need to adapt tot he
number of deployed sensors in the field, without compro-
mising the underlying processing operations or QoS.

These requirements are important when building systems that
need to adapt to the ecosystem of a greenhouse or a farm. Hence-
forth, the main part of the discussion is how edge computing adapt
in such cases, and how serverless could be integrated for efficient
and low power computation.

Figure 16: Edge Agricultural Framework Taxonomy.

As part of the main research question, to find the different im-
plementations that edge computing can have in agricultural field, a
taxonomy with the most important concepts have been established,
which can be seen in figure Figure 16. This depicts three differ-
ent layers, mainly communications, data processing and analytics.
There would be in depth reference in this framework, which would
be very useful to understand in order to gauge the capabilities from
distributed edge computing in an agricultural domain environment.

9.3 Communication Protocols in Agricultural
Systems

Network communication is usually sparse in an open or remote
field. Therefore, it is important to find the right network protocols
or optimizations that literatures have evaluatedwhen implementing
edge computing in such environments. As discussed in section 4,
RQ2 breaks down into multiple sub research questions. The first
one is as follows:

RQ2.1

What kind of communication protocols are implemented in
edge computing devices when deployed in agriculture fields?

As a result, network communication can be done at two different
levels in edge computing, mainly perception and application. The
former deals with sensors communication, whereas the latter is
more for applications running at the edge. Figure y provides a
taxonomy with these two different layers and their corresponding
classifications. However, it is important to have a clear distinction
among the network protocols available at the edge. There are two
different layers to consider, perception and application layers.
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Parameter Wi-Fi Bluetooth ZigBee LoRa

Standard IEEE 802.11 a, b, g, n 802.15.1 802.15.4 802.15.4g

Frequency 2.4GHz 2.4GHz 868/915 MHz, 2.4 GHz 133/868/915 MHz

Data rate 2–54 Mbps 1–24 Mbps 20–250 kbps 0.3–50 kbps

Transmission Range 20–100 m 8–10 m 10–20 m >500 m

Topology Star Star Tree, star, mesh Star

Power Consumption High Medium Low Very Low

Cost Low Low Low Low
Table 5: Network communication protocols in IoT for Perception Layer [23]

9.3.1 Perception Layer Protocols This layer is mostly re-
lated to how sensing devices capture data and send it to a centralized
hub, such as the cloud. The protocols used in this layer are so-called
Wireless Sensing Networks, since they allow wireless communica-
tion between sensing nodes and the application layer [52]. They
can be further divided in the following categories:

Short-Range Protocols. These protocols usually have a high
data transmission and low power consumption [23]. These are used
when devices are near each other to communicate. Examples of
these can be:

(1) Wi-Fi. connects devices in a local area network (LAN) or
the internet. It provides high bandwidth and is suitable for
devices that require fast data transfer. In agricultural systems,
Wi-Fi can be used to connect edge devices to a local network
or the cloud, allowing for remote data collection and control.

(2) Bluetooth. is a wireless communication protocol designed for
short-range communication between devices. Bluetooth’s
sensors can be deployed in the field to monitor environmen-
tal parameters, such as temperature or humidity.

(3) ZigBee. is a wireless communication protocol that is designed
for low-power, low-data-rate wireless networking applica-
tions. In agricultural systems, Zigbee can be used for sensor
data collection, or environmental monitoring.

Cellular Networks. Protocols for cellular networks enable com-
munication in long distances with high data transmission rate. How-
ever, they have a high power consumption and costs for licensing.
Among some examples can be:

(1) GPRS (2G). is a wireless communication protocol that is used
for data transmission over mobile networks. GPRS can be
used to provide wireless connectivity for edge devices that
are deployed in remote areas, where other network protocols
may not be available.

(2) 3G. offers higher data transfer rates than 2G technologies,
such as GPRS. 3G networks can offer data transfer rates of up
to several Mbps, making it suitable for more data-intensive
applications. Furthermore, it can be used to provide wireless

connectivity to edge devices that require higher bandwidths,
such as cameras or drones used for monitoring crops.

(3) 4G/LTE. is a wireless communication technology that offers
higher data transfer rates and lower latency. Furthermore, it
can be used to provide high-speed wireless connectivity for
edge devices that require real-time data transmission, such
as sensors, cameras, and drones used for monitoring crops,
weather conditions, and livestock.

(4) 5G. is the latest wireless communication technology that
offers faster data transfer rates, higher capacity, and lower
latency than previous generations. With 5G, edge devices
used in precise agriculture, such as sensors, drones, and
autonomous tractors, can transmit and receive data in real-
time at extremely high speeds.

However, it is true that many of the farms and greenhouses
today do not have cellular coverage, making this protocol a bit
more difficult to adapt to the requirements in the field [46].

Long-Range Protocols. Protocols for long-range networks en-
able communication in long distances. These protocols can have
the lowest power consumption, however data transmission rate is
usually pretty low. Examples of these can be:

(1) LoRaWAN. is a low-power, long-range wireless communica-
tion protocol that is particularly suited for applications that
require low data rates and long battery life. It has gained
popularity in the agricultural field due to its ability to sup-
port long-range communication between edge devices and
gateways, making it suitable for monitoring large areas of
farmland

(2) Sigfox. low-power, wide-area network (LPWAN) protocol
that is designed to provide long-range communication with
low energy consumption. Sigfox’s long-range capabilities
make it well-suited for monitoring large areas of farmland,
and its low energy consumption makes it a good choice
for battery-powered devices that need to operate for long
periods of time

9.3.2 Application Layer Protocols Once data has been
captured and sent to a processing unit, other type protocols of
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protocols need to be evaluated for application communication and
presentation purposes. Therefore, the idea would conceptually be
the same, finding optimal protocols that can execute much more
efficiently in open fields, under the constrained requirements.

(1) MQTT (Message Queuing Telemetry Transport). This is a light-
weight messaging protocol that is often used in IoT systems
to facilitate communication between devices and cloud ser-
vices. It is designed to be efficient and can work in low-
bandwidth or unreliable network conditions.

(2) CoAP (Constrained Application Protocol). This is another light-
weight protocol that is designed for use in constrained en-
vironments, such as low-power devices or networks with
limited bandwidth. It is often used in IoT systems to enable
communication between edge devices and cloud services.

(3) HTTP (Hypertext Transfer Protocol). This is a standard proto-
col that is widely used on the internet for communication
between web servers and clients. It can also be used in agri-
cultural systems to facilitate communication between edge
devices and cloud services.

(4) AMQP (Advanced Message Queuing Protocol). This is a mes-
saging protocol that is designed to support reliable, asynchro-
nous communication between distributed systems. It is often
used in enterprise systems and can be used in agricultural
systems to enable communication between edge devices and
cloud services.

Table 5 provides a more global comparison of all the communi-
cation protocols previously discussed, with their corresponding fre-
quency, data rate, range, power consumption among other factors.
Based on this analysis, for short range communication protocols,
ZigBee seems to be the most adopted option due to its medium
power consumption. On the other hand, LoRa seems to be the most
used communication protocol for long range, due to its low power
consumption.

9.4 Data Processing
Data processing is another point to consider in this Edge Agricul-
tural Framework. Since there are a variety of sensors that can be
used for different purposes, for example image recognition from
cows in a farm, it is best to paint a conceptual idea on what type of
data measurements can be processed at the edge. As discussed in
section 4, RQ2 breaks down into multiple sub research questions.
The second one is as follows:

RQ2.2

What kind of data processing applications can be leveraged
in edge computing when deployed in agriculture domain?

These different kinds of processing techniques can make a huge
impact in the outcome of the agricultural practices, for instance
saving a plant from drought. They can be classified by the following:

9.4.1 Audio Processing Data gathered frommicrophones can
be crucial for studying the behavior of some areaswithin agriculture.

The following are the different use cases for processing recorded
data at the edge.

(1) Pest detection: Audio signals can be used to detect the pres-
ence of pests in crops. For example, the sounds made by corn
root worm beetles can be recorded and analyzed to detect
their presence in cornfields.

(2) Disease detection: Similar to pest detection, audio signals
can be used to detect the presence of diseases in crops. For
example, the sounds made by rice plants infected with bacte-
rial leaf blight have a distinct pattern that can be identified
through audio analysis.

(3) Livestock monitoring: Audio signals can be used to monitor
the health and well-being of livestock. For example, sensors
can be placed in barns or pastures to monitor the sounds
made by animals, allowing farmers to detect signs of distress
or illness.

(4) Crop growth monitoring: Audio sensors can be used to moni-
tor the growth and development of crops. For example, the
sounds made by plants as they grow and photosynthesize
can be analyzed to provide insights into their health and
growth patterns.

9.4.2 Image Processing Image classification is one of the
most used techniques for data processing in farms and greenhouses.
Images can be very powerful for gathering a wide range of data
about crops and livestock. The following are examples that can be
considered in precise agriculture.

(1) Plant health monitoring: By analyzing images of crops, it is
possible to detect signs of disease or stress before they be-
come visible to the naked eye. This can allow farmers to take
action before the problem spreads, potentially increasing
crop yields.

(2) Crop counting: Image analysis can be used to count the num-
ber of plants in a given area, allowing farmers to estimate
yields and adjust planting density accordingly.

(3) Weed detection: By analyzing images of fields, it is possible
to detect the presence of weeds and differentiate them from
crops. This can allow farmers to target herbicide application
more precisely, reducing costs and environmental impact.

(4) Yield estimation: By analyzing images of crops throughout
the growing season, it is possible to estimate yield potential
and predict harvest dates.

(5) Livestock feed consumption: Analyzing images of feed bunks
or troughs, it is possible to track the amount of feed con-
sumed by the animals and provide automated feeding sys-
tems with real-time data to make adjustments as necessary.

9.4.3 Data Mining The data collected from various sensors
can be used to identify patterns, correlations, and trends that can
provide valuable insights for decision-making in agriculture. Data
mining techniques can be applied to extract useful information and
knowledge in order to take certain actions, for example.
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(1) Predict crop yields: By analyzing historical data on weather,
soil conditions, and other factors, predictive models can be
created to forecast future crop yields. This can help farm-
ers plan for harvests and make decisions on planting and
fertilizing.

(2) Identify disease outbreaks: Sensors can detect changes in plant
or animal behavior that may indicate the presence of disease.
Data mining can be used to analyze this information and
identify patterns that may indicate an outbreak. Early de-
tection can help prevent the spread of disease and minimize
damage to crops or livestock.

(3) Optimize resource allocation: By analyzing data on soil mois-
ture, nutrient levels, and other factors, farmers can optimize
the use of resources such as water and fertilizer. This can
lead to more efficient and sustainable farming practices.

9.5 Data Analytics
Once data has been gathered in different forms, e.g. audio and
image, the analysis of this data is a fundamental piece to study.
Although this may not specifically apply to the AgTech field, it
concerns on the different methods of how data can be analyzed at
the edge. As discussed in section 4, RQ2 breaks down into multiple
sub research questions. The third one is as follows:

RQ2.3

What kind of processing techniques can be used at the edge
when analyzing data from agriculture field?

There are three main classifications on how data analytics that
can be down at the edge. These are summarized in Table 6.

9.5.1 Batch Processing Batch processing engines, such as
MapReduce [20], are designed to process bigger datasets efficiently.
They use a structured, batched input dataset and perform complex
operations on that dataset, for example by distributing computation
across multiple nodes. One use case for edge computing and batch
processing in agriculture could be to optimize irrigation practices.
Sensors in the field can collect data on soil moisture levels, tem-
perature, and humidity, and edge devices can process this data in
batches to identify patterns and optimize irrigation schedules. By
analyzing the data in batches, insights can be gained on the most
efficient times and amounts of water to be applied to the crops,
which can help to conserve water and improve crop yields. How-
ever, due to the large amount of data required by batch processing
jobs, this can be a constraint for smaller computational devices that
are bounded by certain battery limitations. Hence, batch processing
is not the most optimal choice for preforming data analytics at the
edge with a serverless function execution.

9.5.2 Stream Processing Stream processing is a method for
real-time data processing, as it is generated by sensors. This is in
contrast to batch processing, where data is processed in batches
after it has been collected. Stream processing is particularly use-
ful for applications that require immediate or near real-time pro-
cessing and analysis of data. Some examples of stream processing

frameworks that can be used for edge computing in agriculture in-
clude Apache Kafka 15, Apache Flink 16, and AWS Kinesis 17. These
frameworks provide the ability to process large volumes of data
in real-time, and can be deployed at the edge to enable real-time
decision-making. One use case for edge computing and stream pro-
cessing in agriculture could be in the monitoring and management
of livestock. Sensors can be placed on animals to collect data on
their health, behavior, and location. Stream processing can then be
used to analyze this data in real-time to identify potential health
issues in animals. Additionally, stream processing can be used to an-
alyze data on animal behavior and movement patterns to optimize
feed for better efficiency and less waste.

9.5.3 Function Processing Function processing directly re-
lates to the serverless computing model discussed in previous sec-
tions. Therefore, the idea here is to analyze data from sensors in
almost real time. In the context of edge computing in agriculture,
function processing can be used to process and analyze data that is
generated by sensors in the field or in greenhouses. For example, a
function can be triggered by a temperature sensor that detects a sud-
den drop in temperature, and the function can respond by adjusting
the heating system in a greenhouse to maintain optimal growing
conditions. Another example of function processing in agriculture
is the use of image recognition to identify pests or diseases in crops.
An edge device with a camera can capture images of crops, and a
function can be triggered to analyze the images and identify any
signs of pests or diseases. This can help farmers take corrective ac-
tion before the problem becomes widespread and causes significant
damage to crops. One advantage of function processing in edge
computing is that it can reduce latency and improve responsive-
ness. Since functions can be triggered by specific events or requests,
they can be executed quickly and efficiently, without the need for a
dedicated server to process data. This can be particularly useful in
agriculture, where real-time monitoring and decision-making are
critical for maximizing crop yields and minimizing losses.

9.6 Edge Agricultural Systems
Now that requirements and edge agricultural framework have been
specified, there is by now a clearer picture on how edge computing
could enhance precise agricultural practices. As a result, the primary
focus of this section is to build on top of what has already been
discussed, in terms of requirements and framework, to provide a
complete overview on how edge computing could be adapted to
the agricultural field by showcasing three different systems.

9.6.1 FarmBeats: Data-Driven Agriculture [64] . This
research projects, developed by Microsoft, aims at helping farmers
make more informed decisions by providing them with actionable
insights based on real-time data collected from their farms. Figure 17
provides a visual representation of their architecture. The main
contribution of the FarmBeats platform is its ability to collect and
analyze data from a variety of sources, including IoT sensors, drones,
and satellite imagery, and then use machine learning algorithms
to provide farmers with insights that can help them optimize their

15https://kafka.apache.org/
16https://flink.apache.org/
17https://aws.amazon.com/kinesis/
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Advantage Disadvantage

Batch Processing

• Process large volumes of data
• Perform operations offline
• Can be less resource intensive

• Results not available in real-time
• Requires storage large volume of data
• Resource constraint on devices

Stream Processing

• Real-time analyzes and process of data
• Continuous monitoring of sensors
• Detect anomalies or trigger alerts

• Significant processing power
• Not suitable to analyze historical data
• Susceptible to data loss

Function Processing

• Specific targeted analysis of data
• Filtering and transforming data
• Lightweight analysis or decision making

• Not suitable for complex analysis
• Limited by processing power and memory

Table 6: Data Analysis Technique Comparison

Figure 17: FarmBeats Architecture [64].

operations. There are a variety of key features that can be extracted
from this system, which can help to build the discussion on how
edge computing works efficiently in remote agricultural fields:

Main Objectives. Data collection: the platform is designed to
collect data from a variety of sources, including sensors that moni-
tor soil moisture, temperature, and other environmental factors, as
well as drones and satellite imagery that provide high-resolution
images of crops and fields. Data analysis: once the data has been
collected, the FarmBeats platform uses machine learning algorithms
to analyze it and provide farmers with actionable insights. For ex-
ample, the platform can predict when a crop is likely to be ready for
harvest, or identify areas of a field that are not receiving enough
water. Edge computing: to ensure that the platform can operate in
environments with limited connectivity, FarmBeats uses edge com-
puting to process data locally on the farm, rather than relying on
cloud-based services. Edge computing: to ensure that the platform
can operate in environments with limited connectivity, FarmBeats
uses edge computing to process data locally on the farm, rather
than relying on cloud-based services. Integration with existing sys-
tems: the platform is designed to be flexible and can integrate with
existing farming systems, including irrigation systems, weather

stations, and other IoT devices. Low Cost: one of the main objectives
of the FarmBeats platform was to reduce the cost of deploying and
maintaining IoT sensors on a farm. To achieve this, the platform
uses low-cost, off-the-shelf sensors that can be easily installed and
maintained by farmers.

Design Decisions. Scalability: the platform was designed to
be able to handle large amounts of data from a wide variety of
sensors and devices, and to be easily scalable as the number of
devices and sensors on a farm increases. Connectivity: the platform
was designed to work in areas with limited or unreliable internet
connectivity. To achieve this, FarmBeats uses a combination of
technologies, including edge computing, to process data locally on
the farm, and LoRaWAN, previously discussed. Data Security and
Privacy: FarmBeats was designed with data security and privacy
in mind. All data collected by the platform is encrypted and stored
securely, and farmers have full control over their data. Interoper-
ability: the platform was designed to be interoperable with a wide
variety of sensors and devices, regardless of the manufacturer or
communication protocol used. This allows farmers to easily add
new sensors and devices to their farm without worrying about
compatibility issues.
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Architecture. Mist layer: this layer consists of the IoT Base Sta-
tion, which is responsible for collecting the data from all sensors
and devices. In addition, this layer implements TV White Spaces,
which is a protocol to set up high-bandwidth connection between
remote devices [8]. Edge layer: this layer primarily includes a gate-
way that has two purposes: a) performs computation locally on the
farm data before shipping it to the cloud. b) performs independent
operation to handle periods of network outage, thus leading to con-
tinuous availability for the farmer. Cloud layer: this layer includes
a set of cloud services that store, process and analyze the data col-
lected from the edge layer. Furthermore, it contains a set of data
processing pipelines, machine learning models, and dashboards to
provide insights to farmers. User layer: this layer consists of the user
interfaces and applications that provide farmers with the ability to
visualize and interact with the data collected and analyzed by the
cloud layer.

9.6.2 Game Theoretic Analysis: Smart Farming [28] .
This research project applied game theory for analyzing the behav-
ior of farms participating in a cooperative smart farming, which
would benefit farms to get better insight for enhancing desired
output such as crop yielding, water management and irrigation
scheduling. Figure 18 provides a visual representation of their ar-
chitecture. Similar to the FarmBeats research project, there are
some common key features that could be extracted from this pa-
per, to grasp a better understanding on how to integrate edge and
serverless computing in the agricultural field.

Main Goals. Sensor network: the smart farming system should
have a sensor network that can collect data from various sources,
such as soil moisture, temperature, and humidity. Decision support
system: the smart farming system should have a decision support
system that can provide farmers with recommendations on crop
management, fertilization, and irrigation based on the data col-
lected from the sensors. Communication network: the smart farming
system should have a communication network that can transfer
data from the sensor network to the decision support system and to
the farmers. Data security: the smart farming system should have
robust data security measures to protect the privacy and integrity
of the data collected from the sensor network. Cost-effectiveness:
the smart farming system should be cost-effective and affordable
for member farms in the cooperative.

Architecture. IoT Perception layer: this layer includes the sensors
and devices that collect data from the field, such as soil moisture,
temperature, and humidity sensors. The data is transmitted to the
next layer for processing. Edge layer: the layer is composed of a
microprocessor Raspberry Pi that enables edge computation as
required. This Pi hosts AWS Greengrass deployment, and a cus-
tomized Lambda function that can run on the gateway. Cloud layer:
this layer includes the cloud computing platform that processes
and analyzes the data collected from the sensors. Data is stored
in AWS cloud storage and can be analyzed on individual mem-
bers of the coop. Application layer: this layer includes the decision
support system and other applications that provide farmers with
recommendations and insights based on the data collected from
the field.

9.6.3 Ubiquitous Sensor Network Platform [24] . This
work was focuses on building on scalable platform, able to acquire,
process, store and monitor data from crop growing systems using
a mobile ubiquitous approach. Implementing precise agriculture
requires the collection of large amounts of data, which can be
challenging to interpret with many IoT sensors deployed in the
field. Thus, the system aims to providing the proper condition for
crop development based on atmospheric temperature, luminance,
humidity and water PH level. ?? provides a visual representation of
their architecture. Just as the previous two systems, there are some
key contributions that can be collected, which would help identify
the main objectives and design decisions in this agricultural space,
specially considering edge and serverless computing.

DesignDecisions.Ubiquitous data collection: the platformneeded
to be designed to collect data from multiple locations in a precise
agriculture environment. This required the use of multiple wireless
sensor nodes that could be distributed throughout the farm. Scal-
ability: the platform needed to be scalable to accommodate many
sensor nodes as well as different types of sensors. To achieve this,
the platform’s architecture was designed to bemodular, allowing for
easy expansion and customization. Low power consumption: the sen-
sor nodes needed to be designed to minimize power consumption to
prolong battery life and reduce maintenance needs. To achieve this,
the sensor nodes were designed to be low power and to transmit
data only when necessary. Robustness: the sensor nodes needed
to be robust enough to withstand harsh outdoor conditions, such
as high temperature and humidity, as well as dust and water. The
design of the nodes, therefore, included measures to ensure their
resilience against environmental factors. Data security: as the col-
lected data could be sensitive and confidential, the platform needed
to be designed with data security in mind. This included measures
such as secure data transmission and storage, access control, and
encryption.

Architecture. Wireless sensor nodes: these are small devices
that are placed throughout a precise agriculture environment to
collect data from various sensors. The nodes are designed to be low
power and to transmit data wirelessly to a gateway. Gateway: this
is a device that receives data from the wireless sensor nodes and
sends it to the cloud-based server for processing and analysis. The
gateway is responsible for aggregating and transmitting data from
multiple nodes and can also perform some data preprocessing tasks.
Cloud-based server: this is the central component of the platform,
where the collected data is stored, processed, and analyzed. The
server uses various algorithms and models to analyze the data and
provide insights into crop growth and health. The server can also
send alerts and notifications to farmers or other stakeholders based
on the analyzed data. User interface: the platform includes a user
interface that allows farmers and other stakeholders to view and
interact with the collected data. The interface can display real-time
data, historical trends, and other metrics, as well as provide tools
for decision-making and crop management.

10 Conclusion
With the rise of IoT sensors and edge devices across multiple in-
dustries, in particular agriculture, it has become a necessity to
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Figure 18: Game Theoretic Analysis for Cooperative Smart Farming Architecture [28].

make computation more efficient and better performing. There-
fore, serverless computing is considered an option to achieve these
requirements due to its lightweight sandbox environment. Through-
out this survey, serverless functions and edge computing have been
studied from multiple angles in order to explore the potential scala-
bility and efficiency in smaller devices. As part of this survey, a sys-
tematic review has been conducted with the goal of answering two
essential research questions: (1) How can serverless functions
be optimized to run at the edge? (2) What sort of implemen-
tations are there in agricultural edge computing?

In the first research question, it was determined that Unikernels
and Web Assembly were better isolation mechanisms, while Dy-
namic schedulers are predominately more optimal for such a chang-
ing edge environment. Similarly, Offloading mechanisms should be
evaluated based on the amount of data that needs to be processed,
which could then be from edge to cloud or from cloud to edge.

In the second research question, three main branches were eval-
uated to understand more about edge computing role in precise
agriculture. Communication protocols should take into account
efficiency in data transfer. Data processing applications can be used
for a variety of purposes, such as audio, image or data mining. Data
analytics can be done using batch, stream or function processing.

Future work includes experimenting with different frameworks
and optimizations discussed in this survey, in order to find the
most efficient serverless function implementation for edge devices.
Specifically, the objective is to experiment with edge devices in
precise agriculture, where serverless functions would be responsible
for data processing and analyzes from sensors.
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