
Vrije Universiteit Amsterdam

MSc Thesis

Exploring the Performance of
Kubernetes-Deployed Containers

Author: Antonios Sklavos (2738064)

1st supervisor: Animesh Trivedi
daily supervisor: Matthijs Jansen
2nd reader: Tiziano De Matteis

A thesis submitted in fulfillment of the requirements for
the VU Master’s of Science degree in Computer Science

November 21, 2023

ii

Abstract

Cloud computing provides businesses with scalable and cost-effective access

to computing resources. There, isolation mechanisms, like containers, play an

important role in isolating different users’ workloads while aiming to maintain

their high-performance expectations.

Although different isolation mechanisms have been extensively compared in-

dividually, these mechanisms are not always used in isolation. These mech-

anisms are typically used through resource management systems, like Kuber-

netes, where complex environments necessitate coordinated control and efficient

distribution of resources. To our knowledge, there lies a noticeable absence of

in-depth comparisons of these mechanisms within the environment of resource

managers.

Since the orchestration mechanism operates independently of the isolation

mechanism, we want to study how different optimisations in isolation and per-

formance of the isolation mechanism affect the performance, scalability and

resource utilisation when deploying through orchestration mechanisms.

We conducted rigorous benchmarks on security and performance-focused iso-

lation mechanisms within the context of the Kubernetes orchestration mecha-

nism. We extended the Continuum framework, which automates infrastructure

and benchmark deployment, with the support of Kata Containers, a security-

focused containerisation technology. We found the Firecracker-based version

of Kata containers lacking compared to the default QEMU-based in terms of

startup time performance. Moreover, our findings indicate that containerisa-

tion technologies that focus on security display compromised performance and

scalability characteristics compared to performance-oriented ones. This leads

us to the conclusion that no single containerisation technology stands out as

universally superior.

The complete code including the infrastructure implementation and experi-

ments is available online on GitHub, at https://github.com/anskl/continuum.

https://github.com/anskl/continuum

iv

Contents

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 3

1.3 Research Questions . 3

1.4 Research Methodology . 4

1.5 Thesis Contributions . 4

1.6 Plagiarism Declaration . 4

1.7 Thesis Structure . 5

2 Background 7

2.1 Isolation mechanisms . 7

2.1.1 Virtual Machines . 7

2.1.2 Containers . 9

2.1.3 Other isolation mechanisms . 10

2.2 Container Orchestration . 11

2.2.1 Docker Swarm . 11

2.2.2 Kubernetes . 11

2.3 The Continuum Framework . 12

3 Design 15

3.1 Infrastructure and Orchestration Requirements 15

3.1.1 Infrastructure Requirements . 15

3.1.2 Orchestration Mechanism Requirements 16

3.2 Design of Benchmarks . 16

3.2.1 Design of Startup Performance Benchmarks 16

3.2.2 Design of Scalability Benchmarks . 17

3.2.3 Design of Resource Usage Tests . 18

i

CONTENTS

4 Implementation 21

4.1 Runtime Implementation . 21

4.1.1 Automating the installation of Kata Containers 21

4.1.2 Kata containers as Kubernetes runtime 23

4.2 Implementing kata-runtime Value Retrieval 24

4.3 Benchmarks implementation . 25

5 Evaluation 27

5.1 Benchmark results and evaluation . 27

5.1.1 Evaluation of Startup Performance 27

5.1.2 Evaluation of memory usage . 30

5.1.3 Evaluation of CPU usage . 31

5.2 Reporting Negative Results . 32

5.3 Limitations and Threat to Validity . 34

5.4 Summary . 35

6 Related Work 37

7 Conclusion 39

7.1 Answering Research Questions . 40

7.2 Limitations and Future Work . 41

References 43

A Reproducibility 47

A.1 Abstract . 47

A.2 Artifact check-list (meta-information) . 47

A.3 Description . 47

A.3.1 How to access . 47

A.3.2 Software dependencies . 47

A.4 Installation . 48

A.5 Experiment workflow . 48

A.6 Evaluation and expected results . 48

A.7 Experiment customization . 48

A.8 Notes . 48

B Self Reflection 49

ii

1

Introduction

Cloud computing provides on-demand access to computing resources via the Internet.

Given the widespread popularity and occasional misconceptions surrounding the term

"cloud computing", it is important to adhere to a well-accepted definition. The National

Institute of Standards and Technology (NIST) offers a valuable definition of cloud com-

puting, identifying it by five key characteristics (1): automatic provisioning of resources on

demand, access to capabilities over a network through standard mechanisms, the pooling

of resources to serve multiple users, swift scaling of resources to meet demand giving an

impression of unlimited resources, and the transparent monitoring, reporting, and opti-

mization of resource usage. The cloud computing industry represents a large market with

a predicted 600 billion USD in user spending by the end of 2023, according to projections

by Gartner (2). This substantial market capitalization illustrates the significance of cloud

applications across an extensive range of sectors including education, government, and

healthcare, to name a few (3); for example, the U.S. Department of Defence is enabling

DevSecOps on F-16s and battleships (4)

In cloud computing, containers are used extensively to isolate workloads from different

users and dynamically scale across machines. Containers are resource-efficient and high-

performing isolation mechanisms. They allow programs to run in isolated environments,

sharing the host operating system kernel, filesystem and resources (5). While offering

strong performance compared to alternatives, like virtual machines, containers generally

display weak isolation (6). Security is important according to a recent survey by Google

Cloud, where it was reported that the top priority for organizations in 2023 is cybersecurity

(3). Container security concerns have led to the emergence of security-optimised containers,

such as Kata Containers and gVisor.

1

1. INTRODUCTION

Container orchestration mechanisms, a significant component of cloud computing, are

responsible for managing the deployment and scaling of applications across multiple cloud

environments. The container orchestration mechanism we chose to conduct our tests was

straightforward: We used Kubernetes (7) since it dominates the container orchestration

landscape. In the Cloud Native Computing Foundation’s (CNCF) annual survey of 2022,

66% of CNCF end users believe it to be "very" or "extremely important", while 19% con-

sider it "important" (8). Moreover, in the same survey, Kubernetes is quoted as "emerging

as the ‘operating system’ of the cloud". In a different survey by RedHat, 70% of the IT

executives polled were employed by Kubernetes-using companies (9).

To evaluate the differences between different isolation mechanisms, we used the Con-

tinuum framework, which automates the deployment and benchmarking of infrastructure,

software and applications (10).

1.1 Context

The need to isolate workloads on the same machine appeared in the early days of comput-

ing. The appearance of virtual machines and virtual machine monitors (VMMs) marked

the beginning of the current era of isolation mechanisms. The VMMs are expected to be-

have similarly to physical hardware: they export an abstraction of the physical hardware

(11). That abstraction enables any software able to run on the hardware to be also able to

run on the abstraction (12). The abstraction of virtualisation adds a performance overhead

that has been deemed unwanted in many scenarios. That sparked the creation of Linux

containers. The containers, in their simplest form, use mainly Linux features and utilities

to isolate workloads from one another. Generally, different container technologies have one

thing in common: they share the host OS kernel. In their case, the isolation is weaker

when compared to Virtual Machines; for example, sharing the host kernel means that a

security vulnerability in the host kernel affects the total amount of containers deployed on

the host (6). In contrast, virtual machines employ their own kernel and do not share the

host one. The great performance of containers (usually near-native) has led to them being

the de facto form of isolation mechanism in the cloud.

As the technology matured, security became a greater concern, which became apparent

with the appearance of tools like Firecracker, which is a cloud-optimized VMM, and Kata

Containers which automate the popular technique of wrapping containers inside VMs as

seen in (6), (13).

2

1.2 Problem Statement

Containers and VMs have been compared extensively (together with other isolation

mechanisms like Unikernels), for example in (14), (15), (16). However, in the context

of orchestration mechanisms, there is a lack of comprehensive comparison of different tech-

nologies, which leads us to our Problem Statement.

1.2 Problem Statement

Container orchestration mechanisms, such as Kubernetes, generally default to using con-

tainers with a performance orientation as their isolation mechanism (runtime) due to their

advantages, including but not limited to their rapid elasticity property. However, the weak

points of such containers, especially when compared to other isolation mechanisms, are

thus inherited in the whole orchestration stack, potentially affecting a wide range of users.

Security is a growing concern in the context of cloud computing (3), and thus acknowledg-

ing these inherited weak points is crucial. These weaknesses could introduce vulnerabilities

or performance bottlenecks that are amplified in a clustered environment where multiple

applications and services rely on the efficiency of the underlying containers.

We examine the performance implications of containers with a wide range of perfor-

mance and isolation properties, all in the context of an orchestration mechanism (in our

case Kubernetes) with the goal of facilitating informed decision-making based on different

security/isolation and performance needs.

1.3 Research Questions

Our objective is to gain a thorough understanding of how the orchestration mechanism can

influence its deployed containers. The formulation and addressing of the following Research

Questions can aid in this goal. As previously mentioned, we chose to use Kubernetes as

our container orchestration mechanism.

• RQ1: How does the startup time of different containerised platforms compare in

Kubernetes?

• RQ2: How does the scalability of different containerised platforms compare in Ku-

bernetes?

• RQ3: How does the resource usage of different containerised platforms compare in

Kubernetes?

3

1. INTRODUCTION

The answers to the above questions are of a quantitative nature, which can help in the un-

derstanding of underlying patterns, trends, and relationships within the data. Startup time

is an important metric in the context of cloud computing and microservices architecture,

where rapid scaling and fast response times are crucial for handling fluctuating workloads.

The scalability property of a runtime directly affects consistent performance and reliability.

Knowing the resource usage of containerised applications is significant nowadays with a

scarcity of available hardware resources, as well as environmental concerns.

1.4 Research Methodology

To answer the above Research Questions, the following methodologies were employed

throughout the project:

• M1: Benchmarks: the design and execution of appropriate benchmarks. The bench-

marks conducted are extensively mentioned in the Section 3.2 (Design).

• M2: Collecting operational traces: Low-level information made the use of opera-

tional traces necessary.

• M3: Open source software and reproducible experiments: The experiments were

conducted on open source software, which is publically available and the experiments

are reproducible and accessible.

1.5 Thesis Contributions

This thesis makes the following contributions.

• We have developed a framework for deploying and benchmarking, aimed at comparing

different container platforms on Kubernetes.

• We compare various container platforms with different benchmarks that lead to the

answers to the above research questions.

• We compare storage backends for containerisation technologies on Kubernetes.

1.6 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment. Parts of my

survey on isolation mechanisms (5) are used mainly in the background section.

4

1.7 Thesis Structure

1.7 Thesis Structure

In the next chapter, we will present detailed background information about isolation mech-

anisms, container orchestration and Continuum - the framework that allowed us to auto-

mate the deployment of infrastructure and benchmarks in a virtualised environment. The

following chapters are concerned with the design, implementation and evaluation of our

system. Next, we go through related work and then conclude our report. The appendix

contains detailed reproducibility information as well as a self-reflection chapter.

5

1. INTRODUCTION

6

2

Background

In order to explore the performance, scalability and resource utilisation implications of

container orchestration mechanisms (in our case Kubernetes), we need to lay the foun-

dational background of isolation mechanisms, container orchestration and the Continuum

Framework - the tool that has allowed us to compare different scenarios in a reproducible,

scientific way.

2.1 Isolation mechanisms

Isolating processes from different users is challenging without compromising performance,

and no one-solution-fits-all mechanism exists (5). In security-critical scenarios, full virtu-

alisation, where processes are isolated in separate, virtualised and unmodified operating

systems, can offer a solution. Performance overhead is unavoidable in this case, stemming

from the abstraction of virtualisation: The hypervisor which manages the virtualised oper-

ating system is an intermediary that must handle the translation of virtualised instructions

to physical ones. On the contrary, having relaxed security requirements offers the ability

to limit some isolation-related overheads (for example, the need for separate operating sys-

tems for different users). Consequently, performance and isolation can be contradictory,

forming a decision dilemma for isolation mechanism designers.

2.1.1 Virtual Machines

Virtual Machine Monitors (Hypervisors) are pieces of software that enable the operation

of virtual machines by making the hardware resources of their hosts available to them (17).

Having privileged access to hardware resources, they act as an intermediary between the

hardware and virtual machines and have the ability to enforce security and performance

7

2. BACKGROUND

Figure 2.1: Hypervisors (Type-2) Architecture

policies (18) (12). The VMMs are expected to behave similarly to physical hardware (11);

they export an abstraction of the physical hardware that enables any software to run on the

hardware to be also able to run on the abstraction (12). The isolation they offer between

different systems is arguably their most important contribution (18).

Widely used open-source Hypervisors include QEMU, KVM, XEN and Firecracker (5).

Hypervisors allow for a high degree of isolation between the hardware and the virtual

machine, as well as between different software on the same hardware (11). A significant

disadvantage comes from the isolation itself: having each VM carry its copy of the OS

and other resources limits the number of VMs one can deploy on the same system (19).

Additionally, the abstraction of the hardware that the VMM provides creates an overhead

that a higher layer of software will not be able to remove (16).

Figure 2.1 shows a simplified overview of the architecture of Virtual Machine Monitors

(VMM). There, we can see that the hypervisor itself is an intermediary between the host

OS and the virtual machines. Each virtual machine carries its own guest OS.

Modern VMMs make use of techniques such as para-virtualisation and CPU-supported

virtualisation extensions to enhance VM performance. These techniques are not reflected

in the simplified Figure 2.1.

8

2.1 Isolation mechanisms

Hardware

Host OS

Container Engine

Host OS Libraries

Container

Application

Libraries

Container

Application

Libraries

Figure 2.2: Container Architecture

2.1.2 Containers

Containers allow programs to run in isolated environments, sharing the host operating

system kernel, filesystem and resources (19) (20) (6). They originally came into view to

replace VMs as faster alternatives (19).

Containers use a combination of Unix and Linux kernel extensions and other tools to

confine processes into their own execution environment. Most notably, kernel namespaces

can be used to limit the resources (e.g. process IDs, file names) that a process has access

to. The Linux kernel feature cgroups is responsible for limiting the resource usage (e.g.

CPU, disk access) of a process. The Unix operation chroot, is a Linux tool that restricts

a process’ access to a specific directory. In fact, chroot, as well as FreeBSD jails, can

be regarded as early forms of containerisation. Figure 2.2 shows the general architecture

of Containers.

Containers can offer advantages in the performance domain: network, disk, computing,

and memory performance overhead can be zero to little (21) (15). In fact, their overhead

can be so small that the performance can be comparable with the equivalent bare-metal

one (22). This is a direct consequence of the shared kernel: the syscall execution path is

significantly shortened in comparison to virtual machines(20). Due to their more negligible

9

2. BACKGROUND

overhead compared to VMMs (albeit not in every case (16)), they allow for increased

density - the amount of isolation unit instances that a machine can host, as well as smaller

disk images (15).

Containers do not come without disadvantages. Isolation is typically limited (compared

to Hypervisors); for example, if a container stresses the kernel with system calls, it will not

be able to handle system calls from other containers (performance isolation). A malicious

container can take advantage of this by causing a denial-of-service attack (23) (security

isolation); Overprovisioning can lead to DoS attacks also (11). Due to its shared nature, a

compromised kernel affects all containers (6). In their case, isolation is understood to be

lacking enough that deploying a container inside a hypervisor has been common practice

(23) (6) (13).

2.1.3 Other isolation mechanisms

Secure containers (also mentioned as sandboxed container technologies) are security-

oriented containerisation platforms. They aim to balance performance and isolation using

kernel features like namespaces as well as leveraging hardware-based isolation (24). As a

representative example, we examine Kata Containers.

Kata Containers is a tool that aims to combine the benefits of VMs and containers in a

single solution (25) (26) (27). Each workload is run in a container and further isolated in its

separate VM (and thus separate kernel - the containers’ largest attack surface) (25) (28).

As the encapsulating Virtual Machine, Kata Containers defaults to QEMU. Firecracker and

Cloud Hypervisor are provided as alternatives. In contrast to QEMU, Firecracker lacks

block-based storage drivers and device hotplug support. As a result, when using Firecracker

with Kata Containers, updating container resources post-boot and device passthrough are

not supported features. Kata Containers is essentially a container-optimised VM (28).

Figure 2.3 shows a simplified overview of the Kata Containers runtime architecture. Most

importantly, each container is encapsulated in a Virtual Machine.

10

2.2 Container Orchestration

Hardware

Host OS

Hypervisor

VM

Container

Process

Guest OS

Dependencies

VM

Container

Process

Guest OS

Dependencies

Figure 2.3: Kata Containers Architecture

2.2 Container Orchestration

2.2.1 Docker Swarm

Docker Swarm is a container orchestration mechanism that manages and coordinates con-

tainer deployments, ensuring seamless communication between containers and utilizing

software-defined networks (29). Swarm improves the base node’s resource efficiency and

distributes containers around several nodes to help with load distribution.

2.2.2 Kubernetes

Kubernetes is an open-source platform designed to automate the management of contain-

ers (30). A Kubernetes setup is commonly referred to as a Kubernetes cluster. Every

Kubernetes cluster comprises a collection of worker machines, known as nodes and the

control plane which makes global decisions about the cluster. Kubernetes evolved from

the Borg and Omega container-management systems at Google (7). It is currently the

most dominant container orchestration mechanism (8). Figure 2.4 shows an overview of

the architecture of a Kubernetes cluster.

11

2. BACKGROUND

Control Plane Node

kubelet k-proxy

Pod Pod

Pod Pod

Node

kubelet k-proxy

Pod

Node

kubelet k-proxy

Pod Pod

Pod

kube-api-server

scheduler
controller-

manager

etcd

Kubernetes Cluster

Figure 2.4: Kubernetes Cluster Architecture

2.3 The Continuum Framework

Different tools and platforms may have different architectures, configurations, and work-

loads, which makes it difficult to compare multi-machine workloads fairly and objectively.

A standardised framework for benchmarking distributed systems is required to objectively

and accurately assess the trade-offs and bottlenecks of different isolation mechanisms. The

Continuum Framework fulfils the above requirement by providing an automated way of

deploying and benchmarking of infrastructure. With companies like AWS and GCP, the

cloud provides extensive computing, storage, and resource management services along with

large-scale infrastructure (10). Additionally, Continuum automates the software stack in-

stallation.

Below is an example of a Continuum configuration file (the runtime option is part of the

framework’s development as part of this thesis).

1 [infrastructure]

2 provider = qemu

3

4 cloud_nodes = 2

5 cloud_cores = 8

12

2.3 The Continuum Framework

6 cloud_memory = 60

7 cloud_quota = 1.0

8

9 [benchmark]

10 resource_manager = kubecontrol

11 runtime = kata-fc

12

13 application = empty

The infrastructure section defines QEMU as the virtual machine technology representing

the 2 physical machines - one of them is the Kubernetes control plane on the node), each

one with 8 cores and 60 GiB of memory. The benchmark section defines that the "empty"

application should be deployed on the node, with a Firecracker Kata Containers runtime

(isolation mechanism).

13

2. BACKGROUND

14

3

Design

Evaluating the impact of a container orchestration system on the performance of an isola-

tion mechanism presents challenges, primarily because of the inherently distributed nature

of such environments. When dealing with such distributed systems, there are numerous

variables and factors that can affect the performance. Given these complexities, it’s crucial

to establish a setup that can be consistently replicated, with well-defined parameters. This

approach ensures that external variables are minimized, paving the way for more accurate

and as objective as possible outcomes.

We have split the Design of the project into two distinct parts. The first part consists

of the requirements of the infrastructure and the container orchestration mechanism. The

second part is regarding the design of the benchmarks/tests that will help evaluate the

differences between the various execution runtimes.

3.1 Infrastructure and Orchestration Requirements

To address the research questions we have posed, it is essential to establish clear require-

ments for the system in question. We begin by defining the requirements of the infrastruc-

ture, which will serve as the deployment target for our experiments.

3.1.1 Infrastructure Requirements

R1. Consistent performance: Important, as it enables increased confidence in the re-

sults and minimizes unpredictability.

R2. Ability to configure system resources: Allows for testing different performance

scenarios leading to more informed conclusions.

15

3. DESIGN

R3. Ability to configure deployment resources: This enables analyzing the scaling

behaviour of the system, as well as understanding its performance thresholds and

resource efficiency under varied configurations.

3.1.2 Orchestration Mechanism Requirements

To ensure the container orchestration mechanism can support the subsequent benchmarks,

we have defined the following requirements. These criteria are designed to not only support

our benchmarks but to also enable detailed insights into the orchestration process itself.

R4. Support for various types of execution runtimes (isolation mechanisms) It

is important to be able to compare different runtimes with various degrees of per-

formance and isolation. This will aid in determining the most appropriate runtime

based on security requirements.

R5. Capability to identify various execution stages of orchestration: Having the

capability to examine the execution flow through the orchestration mechanism will

assist in pinpointing its related bottlenecks, comprehending system performance, and

distinguishing it from runtime constraints.

R6. Capability to identify various execution stages of runtime: Being able to trace

the distinct stages of runtime execution facilitates a deeper understanding of the

runtimes’ behaviour, enables comparing different runtimes, and offers insights into

potential areas for optimization.

3.2 Design of Benchmarks

Below, we outline the benchmarks designed to thoroughly evaluate the various isolation

mechanisms from diverse perspectives. For every test type, consistently deploying the same

application across all scenarios is crucial, aligning with R1: Constant performance.

3.2.1 Design of Startup Performance Benchmarks

In order to get a good understanding of the startup performance penalty of a deployment

on a distributed environment enabled by a container orchestration mechanism, we followed

the paradigm below, for each isolation mechanism:

B1: Measure the startup performance of a fixed amount of identical deployments over

different numbers of machines.

16

3.2 Design of Benchmarks

B2: Measure the startup performance of an equal number of deployments per machine,

with the total number of machines varying for each benchmark.

Each one of the points above refers to a collection of benchmarks. The workload in all

cases is deployed in parallel.

B1, essentially, tests for strong scalability of the startup times of the setup. The ideal

outcome is that doubling the amount of machines results in half the total aggregated time

of launching a set amount of pods. The importance of the benchmarks lies in testing the

container orchestration mechanism’s ability to reduce the total execution time with the

addition of more resources.

The benchmarks in the collection B2, test for weak scalability of the startup times of the

setup; the problem size and machines increase proportionally. There, we test the system’s

ability to keep a constant execution time, given double the resources and deployments.

The ideal scenario is that no additional overhead is added and all independent machines

finish their deployments at the same time.

By testing for both strong and weak scalability, we can comprehensively assess the sys-

tem’s startup performance across varying workloads and resource allocations in diverse

scenarios with different isolation mechanisms.

3.2.2 Design of Scalability Benchmarks

Here, we assess the scalability of the amount of deployments the system can support (in

comparison to the scalability of startup performance above). The scalability tests are

important for the following reasons:

1. It is unrealistic to anticipate that a machine will deploy the same number of instances

manually as it would using a container orchestration mechanism. Thus, it is impor-

tant to focus on the potential limitations imposed by the orchestration mechanism

itself.

2. It should not be presumed that the system scales in a linear fashion. For instance,

doubling the worker nodes from two to four might not necessarily double the de-

ployments from 20 to 40. While this is our hypothesis, empirical data is essential to

confirm it.

The primary factors influencing the system’s capacity to support the maximum number

of deployments are the quantity of worker nodes and the memory allocated to them. Con-

sequently, the benchmarks should include a diverse range of combinations derived from

17

3. DESIGN

these variables, allowing for a comprehensive evaluation of the system’s scalability. Such

a benchmark can be as broad as time and resources allow.

After calculating each combination of the value of the variables of choice mentioned

above, we end up with a scalability per worker per memory unit metric.

3.2.3 Design of Resource Usage Tests

Here, we outline the design of tests aimed at understanding the effect of resource usage of

an orchestration mechanism on the runtime it targets.

Design of Memory Usage Tests.

To effectively compare the effect of an orchestration mechanism on different isolation mech-

anisms, it is important to assess the memory overhead of the system. The following

blueprint can be followed for each of the different isolation mechanisms of the comparison.

• Step 1: Measure the total free memory of the system per worker node before and

after the deployments take place.

• Step 2: Divide the difference between the two by the number of deployments yielding

average deployment memory overhead per deployment.

Design of CPU Performance Tests.

Here we measure the scalability of the performance of the system. To do that, we now

switch to a deployment that is computing-intensive. With different combinations of the

CPU and number of worker nodes variables, we measure the total execution time of the

whole deployment (sum of deployment units). Thus, we can test:

• B3: Strong Scalability of Performance

• B4: Weak Scalability of Performance

In B3, for each isolation mechanism to be tested, we begin by setting a fixed number of

deployments and setting a baseline by measuring the total time of the whole deployment

execution. Then, we increase the resources (CPU and worker nodes) available to the

system. This enables us to test for efficiency under increased resource conditions and

determine how those additional resources impact the overall system throughput.

In B4, for each isolation mechanism under consideration, we start with a set number of

deployments relative to a given resource allocation, establishing a performance baseline.

18

3.2 Design of Benchmarks

As we incrementally increase both the deployments and the associated resources (CPU

and worker nodes), we gauge how consistently the system maintains its performance. This

method helps us assess whether the system can effectively manage a balanced growth in

workload and resources while maintaining stable execution capacity. Both of the bench-

marks can be used to optimize the resource of time.

19

3. DESIGN

20

4

Implementation

4.1 Runtime Implementation

In this section, we focus on setting up and utilizing Kata Containers (our selected alterna-

tive isolation mechanism) and integrating the complete software stack into the Continuum

Framework. We opted for Kata Containers as it streamlines the typical process of deploy-

ing containers within VMs, supports a wide range of VM implementations, and seamlessly

integrates with containerd.

4.1.1 Automating the installation of Kata Containers

Installing the Kata Containers runtime in every worker node is the first step in using it

as an alternative Kubernetes runtime. To automatically manage the infrastructure instal-

lation, we used Ansible files which allow us to define, configure, and orchestrate system

configurations in a declarative way. Utilizing alternative container runtimes with Kuber-

netes is feasible, provided that the chosen runtime is compatible with the Kubernetes

CRI (Container Runtime Interface). Notably, our alternative container runtime of choice,

Kata Containers, is compatible with both the CRI-O and containerd Shim API. To en-

sure consistency between the default Kubernetes runtime, runc, and various versions of

Kata Containers like QEMU, we chose to use containerd. This decision helps minimize

discrepancies across these platforms.

We begin with the installation of the default kata-runtime package which uses QEMU

as the wrapping VM. First, we extract the latest Kata Containers release (3.1.3 at the

time of writing this) and add a symbolic link to the kata-runtime in the /usr/local/bin

directory. Then, we create a custom (not mentioned in official documentation) executable

file (/usr/local/bin/containerd-shim-kata-qemu-v2 - naming important) that when

21

4. IMPLEMENTATION

executed, will run the containerd-shim-kata-v2 binary with the necessary QEMU con-

figuration file:

1 #!/bin/bash
2 KATA_CONF_FILE=/opt/kata/share/defaults/kata-containers/configuration-qemu.toml

/opt/kata/bin/containerd-shim-kata-v2 $@↪→

Finally, we add the following section in the containerd configuration file (runtimes section)

to make it aware of the newly installed runtime:

1 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.kata-qemu]
2 runtime_type = "io.containerd.kata-qemu.v2"

The installation of Kata Containers with Firecracker as the wrapping VM requires ad-

ditional steps. Firecracker does not support the Overlay Filesystem (overlayfs), which is

implemented directly in the Linux kernel and requires the device mapper framework. Thus,

we begin by setting up the necessary infrastructure for the devmapper snapshotter to be

used with containerd, with the following bash script:

1 mkdir -p /var/lib/containerd/io.containerd.snapshotter.v1.devmapper
2

3 touch /var/lib/containerd/io.containerd.snapshotter.v1.devmapper/data
4 truncate -s 20G /var/lib/containerd/io.containerd.snapshotter.v1.devmapper/data
5

6 touch /var/lib/containerd/io.containerd.snapshotter.v1.devmapper/meta
7 truncate -s 10G /var/lib/containerd/io.containerd.snapshotter.v1.devmapper/meta
8

9 DATA_DEV=$(sudo losetup --find --show
/var/lib/containerd/io.containerd.snapshotter.v1.devmapper/data)↪→

10 META_DEV=$(sudo losetup --find --show
/var/lib/containerd/io.containerd.snapshotter.v1.devmapper/meta)↪→

11

12 DATA_SIZE="$(sudo blockdev --getsize64 -q ${DATA_DEV})"
13 LENGTH_IN_SECTORS=$((DATA_SIZE / 512))
14

15 dmsetup create devpool --table "0 ${LENGTH_IN_SECTORS} thin-pool ${META_DEV}
${DATA_DEV} 128 32768↪→

Here, we need to explicitly specify the size of the block device that will be used for storing

the actual container data. This allows containerd to store both container images and

runtime data using the devmapper snapshotter. Additionally, we need to configure the

containerd configuration file:

22

4.1 Runtime Implementation

1 [plugins."io.containerd.snapshotter.v1.devmapper"]
2 discard_blocks = true
3 base_image_size = "10GB" # As defined above
4 pool_name = "devpool"
5 root_path = "/var/lib/containerd/io.containerd.snapshotter.v1.devmapper"
6

7 # change default snapshotter - necessary for Kubernetes deployment
8 [plugins."io.containerd.grpc.v1.cri".containerd]
9 snapshotter = "devmapper"

Finally, we need to create the executable file that defines the kata runtimes firecracker

configuration file variable (/usr/local/bin/containerd-shim-kata-fc-v2):

1 #!/bin/bash
2 KATA_CONF_FILE=/opt/kata/share/defaults/kata-containers/configuration-fc.toml

/opt/kata/bin/containerd-shim-kata-v2 $@↪→

4.1.2 Kata containers as Kubernetes runtime

After verifying that the Kata containers runtime is operational in the worker nodes, we

can add them as Kubernetes RuntimeClass targets with:

1 apiVersion: node.k8s.io/v1
2 kind: RuntimeClass
3 metadata:
4 name: kata-fc
5 handler: kata-fc

and

1 apiVersion: node.k8s.io/v1
2 kind: RuntimeClass
3 metadata:
4 name: kata-qemu
5 handler: kata-qemu

Creating and applying (kubectl apply -f <file>) the above files enables Kubernetes to

specify a target runtime for a deployment, like the following example of a deployment:

1 parallelism: 1
2 template:
3 metadata:

23

4. IMPLEMENTATION

4 name: empty-kata-fc
5 spec:
6 runtimeClassName: kata-fc
7 containers:
8 - name: empty
9 image: empty

10 imagePullPolicy: Never
11 resources:
12 requests:
13 memory: "500Mi"
14 cpu: 1
15 env:
16 - name: SLEEP_TIME
17 value: "600"
18 restartPolicy: Never

4.2 Implementing kata-runtime Value Retrieval

For Kata Containers, the startup time to launch a container is anticipated to be longer

compared to traditional containerization solutions such as runc. This is because a virtual

machine needs to be initiated for each container in Kata Containers.

We are not solely focused on the startup time of the container. Instead, we are keen on

understanding the intermediate phases involved in launching a VM, initiating a container

within that VM, and deploying the workload. This detailed analysis will allow us to

compare various VM implementations effectively.

The Kata runtime can generate traces, which can be utilized to evaluate the code’s

execution path, object relationships, and timing information.

1 func (k *kataAgent) startSandbox(ctx context.Context, sandbox *Sandbox) error {
2 span, ctx := katatrace.Trace(ctx, k.Logger(), "StartVM", kataAgentTracingTags)
3 defer span.End()
4 ...
5 }

An OpenTracing endpoint, like Jaeger can receive and export a graphical frontend. The

Jaeger frontend was extensively used to understand the call path and different phases of

execution of the Kata Containers runtime.

We can subsequently retrieve all the traces and process the unrefined data. This allows

us to deduce various execution stages, such as initiating the kata-runtime, establishing the

24

4.3 Benchmarks implementation

virtual machine (VM), connecting to the VM, and so on. To achieve this, we utilize Python,

which is the programming language used in the Continuum Framework’s implementation.

1 # curl request to jaeger endpoint
2 jaeger_api_url =

f"http://{ ip} :{ port} /api/traces?service=kata&operation=rootSpan&limit=10000"↪→

3 response_data = requests.get(jaeger_api_url).json()
4

5 # Sort each trace's spans based on starTime and sort traces based on startTime
6 traces = sorted(
7 [sorted(trace["spans"], key=lambda x: x["startTime"]) for trace in traces],
8 key=lambda x: x[0]["startTime"],
9)

4.3 Benchmarks implementation

The Continuum Framework automates not only the infrastructure but the deployment of

workloads as well. This automation is facilitated through cfg files, which act as input pa-

rameters for the framework, allowing users to define both the infrastructure and benchmark

settings.

To illustrate, consider the example provided below. Here, we’re tweaking various param-

eters like the number of worker nodes, the runtime, and the deployments per worker to

experiment with diverse scenarios. In the leftmost cfg file, we deploy 25 empty applications

on 4 different worker nodes running on the Kata Containers runtime with Firecracker as

the encapsulating VM.

[infrastructure]
...
cloud_nodes = 5
...
[benchmark]
runtime = kata-fc
application = empty
applications_per_worker = 25
...

[infrastructure]
...
cloud_nodes = 1
...
[benchmark]
runtime = runc
application = empty
applications_per_worker = 100
...

25

4. IMPLEMENTATION

26

5

Evaluation

In this section, we evaluate our system as implemented based on the previous two sections.

We deploy our workloads on a Kubernetes cluster and compare different runtimes. The

evaluation is focused on three main dimensions: startup performance, scalability and re-

source usage. The latter is further subdivided into the subsections of memory and CPU

usage:

Startup: How do QEMU and Firecracker-based Kata containers’ startup times compare

with default containerd (runc)?

Scalability: How do QEMU and Firecracker-based Kata containers’ scalability compare

with default containerd (runc)?

Resource usage: How do QEMU and Firecracker-based Kata containers’ memory and

CPU usage compare with default containerd (runc)?

5.1 Benchmark results and evaluation

5.1.1 Evaluation of Startup Performance

We begin by determining the startup performance of the three different runtimes. First, we

look into the strong scalability of the startup performance. The results in Figure 5.1

represent a deployment of a total of 100 applications across one, two and four worker nodes

and measure the total time all 100 applications take so that all reach a running state. The

horizontal axis represents duration in seconds, and lower (faster) values are preferred. The

topmost 3 rows of the vertical axis represent the default Kubernetes runtime (runc), the

following two are QEMU-based and Firecracker-based Kata containers.

27

5. EVALUATION

Figure 5.1: Launching a deployment of 100 replicas across 1, 2 and 4 worker nodes

From this result, two main points can be derived. First, we see a scalability of sublinear

nature. While adding more resources increases the performance, the performance gains

do not increase linearly with the number of resources. Second, Kata Containers’ startup

time is significantly slower with Firecracker compared to with QEMU. That is unexpected

since tests across the board have shown Firecracker to display state-of-the-art boot times,

in contrast to QEMU (31), (13).

We thus proceed to investigate this discrepancy. To do that, we continue by plotting the

total execution time of each one of the above 100 deployments across two worker nodes,

split into different phases of execution - Figure 5.2 and Figure 5.3.

Comparing the two graphs, we see a significant difference: the execution of the Firecracker-

based Kata containers follows a linear pattern. Additionally, in the same graph, we can

notice that the last container (topmost row) is created around the time the first (bottom-

most row) is finished (phase kata_create_container_and_launch (s)). This behaviour

is not displayed by the QEMU-based Kata Containers Figure 5.2.

Investigating this issue, we came up with the following explanation. Kata Containers

with QEMU and Firecrackers differ in the filesystem they use: Firecracker-based Kata

28

5.1 Benchmark results and evaluation

Figure 5.2: 100 applications across 2 worker machines, Kata Containers (QEMU)

containers require the use of the devmapper framework, while the QEMU-based ones use

overlayfs by default. Firecracker’s use of the devmapper framework stems from its limita-

tion of only supporting block-based storage drivers. To strengthen our case, we proceed

by running the same experiment on QEMU-based Kata containers with the use of the

devmapper framework. Plotting the different execution phases in this case produces Fig-

ure 5.5.

Here we notice a similar behaviour to Figure 5.3, verifying our finding that the de-

vmapper framework was the cause of the Firecracker-based Kata Containers’ slower boot

performance. Additionally, the last phase of execution (start_application (s)) takes

significantly longer than the previous two cases. Finally, the final boot time reaches a

duration of 53 seconds (up from 28 when using overlayfs). This is significantly slower com-

pared to Firecracker-based Kata containers’ 38 seconds and is aligned with performance

displayed at isolated tests.

We are thus led to a significant finding: using Kata containers with Firecracker forces

the use of the devmapper framework. Compared to the default Kata containers (with

QEMU), counter-intuitively, this affects significantly and negatively the boot performance

of the containers.

Next, we look into the weak scalability of the startup performance. To do that,

29

5. EVALUATION

Figure 5.3: 100 applications across 2 worker machines, Kata Containers (Firecracker)

we increase the workload (Kubernetes pods to launch) and worker nodes proportionally.

More specifically, for this benchmark we deploy 25 replicas of the workload per working

machine (node) and measure the total boot time for a workload of one, two and four worker

nodes.

Table 5.6 shows the total time it took until all pods reached a "Running" state, per

configuration of an example deployment. Interestingly, in this particular test, we see that

runc does not scale well, and in fact, has a 100% decrease in boot time when quadrupling

the workload and resources proportionally. Firecracker-based Kata containers show an

increase of 10% and 36% boot time speed when doubling and quadrupling the workload

and resources proportionally. The best boot time scaling is seen with QEMU-based Kata

containers, where we see an 11% and 17% increase in double and fourfold workload and

resources.

5.1.2 Evaluation of memory usage

In this section, we measure the average Kubernetes pod memory usage per runtime. To do

that, the free memory of a worker machine is measured. Then, we start by deploying 100

replicas of our "simple" application on that machine. After the pods reach a "Running"

state, we measure the free memory of the system. We divide the difference of the two by

30

5.1 Benchmark results and evaluation

Figure 5.4: 100 applications across 2 worker machines, runc

100 which leads us to the average memory footprint. We the proceed to repeat the process

for our three different runtimes.

average memory footprint (MiB)

runc 10
kata-qemu 152

kata-firecracker 135

Table 5.1: Average pod memory footprint

In Table 5.1, we can see that Firecracker-based Kata containers have a memory footprint

of around 10% smaller than those based on QEMU. Moreover, in both cases, the memory

footprint is one order of magnitude greater than that of runc (containerd).

It is important to note that simply measuring the memory footprint of each pod’s process

on the worker node itself is insufficient. The kata-containers runtime spawns other memory-

adamant processes and reserves memory during the execution.

5.1.3 Evaluation of CPU usage

For this test, we deployed a 60-second CPU-intensive workload, for different combinations

of workload replicas, worker nodes and CPU cores. Code 5.7 shows the Dockerfile that was

31

5. EVALUATION

Figure 5.5: 100 applications across 2 worker machines, QEMU-based Kata Containers (de-
vmapper)

used to create the stress test.

In the following figures, we compare different runtimes to understand how they affect

CPU-intensive workloads. The horizontal axis represents the duration in seconds - in this

specific case, 60 seconds is the theoretical minimum.

First, we evaluate the strong scalability of the CPU. In Figure 5.8, we deploy a constant

total of 8 workloads with a 60-second duration across 1,2 and 4 worker nodes. From this

graph, we can see that both versions of Kata containers perform in a similar manner and

are both slower (4-15%) than the baseline (runc).

In Figure 5.9 we test for the weak scalability of the CPU overhead. There we can see

that for each runtime, after doubling the workload and resources, the time stays constant

(within a margin of error). The same happens when we quadruple the resources and

workload. Again, we see an increased overhead with Kata containers compared to the

baseline (runc). These results reflect the expected behaviour of weak scaling.

5.2 Reporting Negative Results

To evaluate scalability, our original plan was to measure the maximum number of con-

current pods each worker node can handle, based on a set configuration, for all different

runtimes. Our understanding was that the limiting factor in that case would be each worker

32

5.2 Reporting Negative Results

Figure 5.6: Launching a deployment of 25 replicas per node across 1, 2 and 4 worker nodes
(weak scaling of boot time)

node’s available memory. We measured the memory overhead of each pod in a different

experiment, and we expected it to be in the range of 150 MiB in either case of Kata Con-

tainers implementations. After making sure the worker had sufficient memory available

(128 GiB) and the pods did not request a minimum amount of memory, we launched a

workload of 1000 replicas as a first attempt at gauging the scalability. To our surprise, the

number of pods that would reach a "Running" phase would max out at 109. We investi-

gated the running pods and proceeded by deleting a pod of a different deployment that was

responsible for gathering resource usage metrics. After making sure to delete all running

pods and re-deploying the test, we found ourselves in a similar situation: the number of

running pods would not go past 110.

After some research, an unexpected limitation from Kubernetes itself came up: In a

Kubernetes cluster, the maximum number of running pods per worker node is in fact

limited to 110 (32). This led to a decision crossroad. We could either try to implement a

modified Kubernetes version or answer scalability indirectly. The former would require a

significant time investment due to our lack of understanding of the reasons for the imposed

limitation, with limited potential for success. As a result, we chose the latter.

33

5. EVALUATION

1 FROM alpine:3.18.4

2

3 RUN apk add --no-cache stress-ng

4

5 # Default timeout value

6 ENV TIMEOUT=60s

7

8 CMD ["sh", "-c", "stress-ng --cpu 1 --timeout $TIMEOUT"]

Figure 5.7: Simple stress image Dockerfile

5.3 Limitations and Threat to Validity

The tests mentioned above were run on a virtual Kubernetes cluster, deployed using the

Continuum Framework. Each worker node was a virtual machine itself with a sufficient

amount of available memory for each test, and cores pinned to the physical cores of the

machine. The latter means that the number of worker nodes was limited by the number

of cores (in our case 20) of the physical machine. We opted to not use virtual cores as the

results would be misleading and inconsistent, especially in the case of CPU stress tests.

However, we expect the virtual nature of our testing environment did not alter the relative

differences between the different runtimes.

It would be interesting to test the boot scalability on more worker nodes and find a point

of diminishing returns in boot time performance. Additionally, we expect to see different

values when deployed on a physical Kubernetes cluster.

The finding that Firecracker-based Kata containers perform worse than QEMU-based

ones led to the implementation of a filesystem option in Continuum. This would allow the

users to choose a filesystem from the configuration file they use continuum with (assuming

it is compatible with their runtime of choice). Unfortunately, in the case of QEMU-based

kata containers, choosing the devmapper framework proved to be unstable: there would

be currently unidentified reasons some tests would fail. Due to time constraints, that was

not examined properly. Having the option to compare Firecracker and QEMU-based Kata

Containers with the devmapper framework in the tests above would potentially lead to

more findings and a more complete comparison of the two runtimes.

34

5.4 Summary

Figure 5.8: Strong scalability of CPU

5.4 Summary

To summarise, in this section, we evaluated the boot time performance and resource usage

of QEMU and Firecracker-based Kata Containers and compared them with the default

Kubernetes runtime, runc. We found the Firecracker-based Kata Containers reaching a

running state in a slower time in comparison to QEMU-based ones. This unexpected

finding does not correspond to the expected behaviour of isolated runtimes, where the

hyper-specialised Firecracker VM outperforms QEMU in the realm of boot times. We

showed that Kata Containers offer significantly slower boot times in comparison to runc.

Additionally, we showed that the memory footprint of Kata Containers is one order of

magnitude larger than that of runc, in the context of Kubernetes. Moreover, the CPU

overhead was in the worst case 15% worse than baseline (runc).

In consideration of the constraints imposed by Firecracker, it is advised to adhere to the

default configuration for Kata Containers, which utilizes QEMU.

35

5. EVALUATION

Figure 5.9: Weak Scalability of CPU

36

6

Related Work

This section is dedicated to examining surveys and publications that concentrate on com-

paring various container runtimes. None are comparing the different isolation solutions

in the context of a container orchestration system but in an isolated environment. Their

analysis remains useful to determine whether the relative performance relations translate

to the context of Kubernetes.

An Updated Performance Comparison of Virtual Machines and Linux Con-

tainers (14). Here, virtual machines are compared with Linux containers in isolated

scenarios. It is concluded that the unavoidable virtual machine hypervisor overheads can-

not be removed by a subsequent higher layer, but those overheads are mainly affecting

I/O performance. The additional layers of abstraction in virtualization lead to dimin-

ished workload performance, resulting in customers experiencing a less favourable price-

to-performance ratio. Remarkably, this paper questions the common practice of deploying

containers inside virtual machines, which is employed by the runtime we worked with ex-

tensively in our project, Kata Containers. This practice is questioned as "it imposes the

performance overheads of virtual machines".

Hypervisors vs. Lightweight Virtualization: A Performance Comparison (15).

In this study, a significant observation is highlighted: Container-based solutions, with their

shared kernel and operating system libraries, offer the benefit of a higher density of in-

stances and smaller disk images compared to hypervisor-based approaches. It is concluded

that for certain application types, disk I/O efficiency may continue to be a limiting factor.

Based on that, we can focus on disk I/O performance in future work. Moreover, the con-

clusion is drawn that containers exhibit strong performance, though their flexibility and

simplified management come at the cost of security. In our work, we verified the higher

density capabilities of runc containers.

37

6. RELATED WORK

Performance Overhead Comparison between Hypervisor and Container Based

Virtualization (16). In this work, the following conclusions are drawn. First, compared

to VMs, containers are more resource and time-efficient, as they bypass the need for run-

ning a hypervisor and guest OS, and eliminate the booting and shutdown of a full OS.

Second, while container-based solutions are certainly more lightweight, hypervisor-based

technology does not always result in higher performance overhead. Last, the container’s

average performance is generally better than the VM’s and is even comparable to that of

the physical machine with regard to many features.

Performance Evaluation of Container-Based Virtualization for High Perfor-

mance Computing Environments (21). In comparison to the rest of the related work,

this work focuses on High Performance Computing, which combines computational re-

sources to solve advanced problems. A noteworthy contribution of this study is the presen-

tation of a comprehensive isolation comparison of various systems. However, the runtimes

explored are somewhat outdated.

My VM is Lighter (and Safer) than your Container (23). This paper asserts that

security remains an ongoing challenge in container environments. As a better alternative, it

recommends Unikernels as a faster and safer alternative. Applicable to a cloud environment

is the recognition that compute services for various tenants require robust isolation to

minimize the risk of sensitive information leakage.

38

7

Conclusion

In this work, we compared the performance of Kubernetes-Deployed Containers. To do that

we designed, deployed, and evaluated experiments with various configurations and goals.

Those experiments were run on a virtual Kubernetes cluster, with the help of the Contin-

uum framework. The Continuum framework automates the deployment of infrastructure

and benchmarks. It was necessary to extend the Continuum Framework so that it supports

different runtimes. We provide the implementation of Kata Containers a runtime that en-

capsulates containers in virtual machines that run standard OCI Image Format images.

Kata Containers use QEMU as the encapsulating virtual machine by default. In addition

to that, we enabled the operation of Firecracker-based Kata containers in Continuum.

Through the process of evaluating the startup performance of different containers, we

came across an important finding. The startup performance of Firecracker-based Kata

containers was worse than the QEMU-based ones. That is unexpected since Firecracker is

a serverless-optimised virtual machine monitor where startup time is of high importance.

Moreover, it has been shown to outperform QEMU in this regard in various works. We

concluded that the reason for this result is Firecracker’s limitation of only supporting block-

based storage drivers. QEMU-based Kata containers make use of the overlayfs filesystem,

which in our tests outperforms Firecracker’s devmapper framework.

Our experimental results suggest that the default runtime of Kubernetes, runc, remains

the preferable option when performance is a high priority. In the case where security is a

high priority, QEMU-based (default) Kata containers present a viable alternative.

39

7. CONCLUSION

7.1 Answering Research Questions

In this section, we present our answers to the research questions proposed in the Introduc-

tion section. As mentioned in the section of Evaluation 5.2, we failed to answer RQ2, due

to unexpected limitations of the Kubernetes system.

RQ1: How does the startup time of different containerised platforms compare in Ku-

bernetes?

The values in Figure 7.1 show the overhead of QEMU and Firecracker-based Kata con-

tainers. This overhead is observed when deploying a total of 100 pods across varying

configurations of 1, 2, and 4 worker nodes, and is expressed as a percentage. The ob-

served increase is notably significant, particularly in the context of Firecracker-based Kata

Containers.

Figure 7.1: Startup time overhead as a percentage from baseline (runc)

40

7.2 Limitations and Future Work

average memory footprint
(MiB)

as a percentage of baseline

runc 10
kata-qemu 152 1520 %

kata-firecracker 135 1350 %

Table 7.1: Average pod memory footprint

RQ2: How does the scalability of different containerised platforms compare in Kuber-

netes??

We can answer this question indirectly, based on the values of RQ3.

RQ3: How does the resource usage of different containerised platforms compare in Ku-

bernetes?

Resource usage was quantified from two distinct aspects: memory consumption and CPU

overhead. Table 7.1 provides a comparative overview of the average memory footprint for

the various runtimes evaluated. Additionally, it details the percentage increase from the

baseline for each runtime. Subsequently, we examine the CPU overhead associated with

QEMU and Firecracker-based Kata Containers relative to runc, which serves as the base-

line. Figure 7.2 illustrates the results of a 60-second stress test conducted on configurations

of 1, 2, and 4 worker nodes.

7.2 Limitations and Future Work

The evaluation of this work was done in an emulated environment, on a single machine,

with the help of the Continuum Framework. Emulating a Kubernetes cluster on a single

machine can cause performance to differ from real-world scenarios.

In future work, it would be beneficial to incorporate additional runtime environments into

these comparative analyses. Candidates include Cloud Hypervisor-based Kata containers

and gVisor.

Additionally, based on work from Section 6 - Related Work, we can investigate the I/O

performance of Kubernetes deployed containers in future work.

Moreover, it would be interesting to evaluate the performance of Kubernetes containers

on edge computing scenarios.

41

7. CONCLUSION

Figure 7.2: CPU overhead as a percentage from baseline (runc)

42

References

[1] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing.

2011. 1

[2] Inc. Gartner. Gartner Forecasts Worldwide Public Cloud End-User

Spending to Reach Nearly $600 Billion in 2023, 2022. 1

[3] Google Cloud Band Pulse Survey. Wave 5, 2022. 1, 3

[4] Cloud Native Computing Foundation. With Kubernetes, the U.S. De-

partment of Defense is enabling DevSecOps on F-16s and battleships.

https://www.cncf.io/case-studies/dod/. 1

[5] Animesh Trivedi Antonios Sklavos, Matthijs Jansen. Exploring the

Performance-Isolation Trade-off for Isolation Mechanisms. Technical report,

2023. 1, 4, 7, 8

[6] Ilias Mavridis and Helen Karatza. Combining containers and virtual ma-

chines to enhance isolation and extend functionality on cloud computing.

Future Generation Computer Systems, 94:674–696, 2019. 1, 2, 9, 10

[7] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and

John Wilkes. Borg, omega, and kubernetes. Communications of the ACM,

59(5):50–57, 2016. 2, 11

[8] Cloud Native Computing Foundation. CNCF Annual Survey 2022, 2022.

2, 11

[9] Red Hat. Enterprise Open Source Report, 2021. 2

[10] Matthijs Jansen, Linus Wagner, Animesh Trivedi, and Alexandru Iosup.

Continuum: Automate Infrastructure Deployment and Benchmarking in

43

https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://cloud.google.com/blog/transform/top-cloud-computing-trends-facts-statistics-2023
https://www.cncf.io/case-studies/dod/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.redhat.com/rhdc/managed-files/rh-enterprise-open-source-report-f27565-202101-en.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf

REFERENCES

the Compute Continuum. In Proceedings of the First FastContinuum Workshop,

in conjuncrtion with ICPE, Coimbra, Portugal, April, 2023, 2023. 2, 12

[11] Michael Pearce, Sherali Zeadally, and Ray Hunt. Virtualization: Issues,

security threats, and solutions. ACM Computing Surveys (CSUR), 45(2):1–39,

2013. 2, 8, 10

[12] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection

based architecture for intrusion detection. In Ndss, 3, pages 191–206. San

Diega, CA, 2003. 2, 8

[13] Tyler Caraza-Harter and Michael M Swift. Blending containers and

virtual machines: a study of firecracker and gVisor. In Proceedings of the

16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments, pages 101–113, 2020. 2, 10, 28

[14] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An

updated performance comparison of virtual machines and linux contain-

ers. In 2015 IEEE international symposium on performance analysis of systems and

software (ISPASS), pages 171–172. IEEE, 2015. 3, 37

[15] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs.

lightweight virtualization: a performance comparison. In 2015 IEEE Interna-

tional Conference on cloud engineering, pages 386–393. IEEE, 2015. 3, 9, 10, 37

[16] Zheng Li, Maria Kihl, Qinghua Lu, and Jens A Andersson. Performance

overhead comparison between hypervisor and container based virtualiza-

tion. In 2017 IEEE 31st International Conference on advanced information network-

ing and applications (AINA), pages 955–962. IEEE, 2017. 3, 8, 10, 38

[17] Federico Sierra-Arriaga, Rodrigo Branco, and Ben Lee. Security is-

sues and challenges for virtualization technologies. ACM Computing Surveys

(CSUR), 53(2):1–37, 2020. 7

[18] James E Smith and Ravi Nair. The architecture of virtual machines. Com-

puter, 38(5):32–38, 2005. 8

[19] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Container security:

Issues, challenges, and the road ahead. IEEE access, 7:52976–52996, 2019. 8, 9

44

https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf

REFERENCES

[20] Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro.

Docker ecosystem–vulnerability analysis. Computer Communications, 122:30–

43, 2018. 9

[21] Miguel G Xavier, Marcelo V Neves, Fabio D Rossi, Tiago C Ferreto,

Timoteo Lange, and Cesar AF De Rose. Performance evaluation of

container-based virtualization for high performance computing environ-

ments. In 2013 21st Euromicro International Conference on Parallel, Distributed,

and Network-Based Processing, pages 233–240. IEEE, 2013. 9, 38

[22] Aditya Bhardwaj and C Rama Krishna. Virtualization in cloud computing:

Moving from hypervisor to containerization—a survey. Arabian Journal for

Science and Engineering, 46(9):8585–8601, 2021. 9

[23] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-

zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My

VM is Lighter (and Safer) than your Container. In Proceedings of the 26th

Symposium on Operating Systems Principles, pages 218–233, 2017. 10, 38

[24] Vincent van Rijn and Jan S Rellermeyer. A fresh look at the architecture

and performance of contemporary isolation platforms. In Proceedings of the

22nd International Middleware Conference, pages 323–335, 2021. 10

[25] Alessandro Randazzo and Ilenia Tinnirello. Kata containers: An emerg-

ing architecture for enabling mec services in fast and secure way. In 2019

Sixth International Conference on Internet of Things: Systems, Management and Se-

curity (IOTSMS), pages 209–214. IEEE, 2019. 10

[26] Olivier Flauzac, Fabien Mauhourat, and Florent Nolot. A review of

native container security for running applications. Procedia Computer Science,

175:157–164, 2020. 10

[27] Intel. Kata containers. https://www.intel.com/content/www/us/en/

developer/articles/technical/kata-containers.html. 10

[28] Xingyu Wang, Junzhao Du, and Hui Liu. Performance and isolation anal-

ysis of RunC, gVisor and Kata Containers runtimes. Cluster Computing,

25(2):1497–1513, 2022. 10

45

https://www.intel.com/content/www/us/en/developer/articles/technical/kata-containers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/kata-containers.html

REFERENCES

[29] Angel M Beltre, Pankaj Saha, Madhusudhan Govindaraju, Andrew

Younge, and Ryan E Grant. Enabling HPC workloads on cloud infras-

tructure using Kubernetes container orchestration mechanisms. In 2019

IEEE/ACM International Workshop on Containers and New Orchestration Paradigms

for Isolated Environments in HPC (CANOPIE-HPC), pages 11–20. IEEE, 2019. 11

[30] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rah-

man. Xi commandments of kubernetes security: A systematization of

knowledge related to kubernetes security practices. 2020 IEEE Secure De-

velopment (SecDev), pages 58–64, 2020. 11

[31] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-

cracker: Lightweight Virtualization for Serverless Applications. In NSDI,

20, pages 419–434, 2020. 28

[32] Kubernetes. Best practices. https://kubernetes.io/docs/setup/

best-practices/cluster-large. 33

46

https://kubernetes.io/docs/setup/best-practices/cluster-large
https://kubernetes.io/docs/setup/best-practices/cluster-large

Appendix A

Reproducibility

A.1 Abstract

This project uses a modified version of the Continuum Framework to benchmark alternative

Kubernetes runtimes. The code is publicly available. It has been tested on a machine with

a 20-core Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz. OS was Ubuntu 20.04.5 LTS.

A.2 Artifact check-list (meta-information)

• Program: Continuum Framework

• Run-time environment: Google Cloud, bare-metal.

• How much disk space required (approximately)?: 10 GiB.

• How much time is needed to prepare workflow (approximately)?: 1 hour.

• How much time is needed to complete experiments (approximately)?: 2-3 hours
per experiment.

• Publicly available?: Yes.

A.3 Description

A.3.1 How to access

The code is available on GitHub: https://github.com/anskl/continuum.

A.3.2 Software dependencies

• QEMU 6.1.0

• Libvirt 6.0.0

47

https://github.com/anskl/continuum

A. REPRODUCIBILITY

• Docker 20.10.12

• Python 3.8.10

• Ansible 2.13.2

A.4 Installation

Download the code from GitHub, and run a .cfg file from the configuration folder:

1 python3 continuum.py <configuration.cfg>

See the configuration template at https://github.com/anskl/continuum/blob/main/

configuration/template.cfg for inspiration.

A.5 Experiment workflow

All tests from the evaluation are in this folder: https://github.com/anskl/continuum/

tree/antonis/configuration/antonis_thesis. Make sure to alter base_path variable

- remove it altogether if the home folder has enough space available (10GiB).

In the home folder of the project, there are bash scripts that run all tests per cat-

egory, one after another. E.g. https://github.com/anskl/continuum/blob/antonis/

run_all_antonis_1_startup.sh.

A.6 Evaluation and expected results

Numbers similar to evaluation section

A.7 Experiment customization

All experiments can be modified. For this work, https://github.com/anskl/continuum/

tree/antonis/configuration/antonis_thesis was used.

A.8 Notes

I am happy to help with any issues related to the project. Feel free to contact me at

antonis@sklavos.io.

48

https://github.com/anskl/continuum/blob/main/configuration/template.cfg
https://github.com/anskl/continuum/blob/main/configuration/template.cfg
https://github.com/anskl/continuum/tree/antonis/configuration/antonis_thesis
https://github.com/anskl/continuum/tree/antonis/configuration/antonis_thesis
https://github.com/anskl/continuum/blob/antonis/run_all_antonis_1_startup.sh
https://github.com/anskl/continuum/blob/antonis/run_all_antonis_1_startup.sh
https://github.com/anskl/continuum/tree/antonis/configuration/antonis_thesis
https://github.com/anskl/continuum/tree/antonis/configuration/antonis_thesis

Appendix B

Self Reflection

I wish I spent time on the design earlier on, and not after having almost finished with

an original version of the implementation. After designing the system in a more formal

manner, I saw many shortcomings and errors in judgment on my part.

I realised soon that I could not estimate the time cost of different parts of the projects

accurately. As a representative example, I was making absolutely no progress for 3 days

trying to run Kata containers inside a QEMU VM. The solution was a simple XML line

in the KVM creation file, allowing access to all CPU features of the host:

<cpu mode='host-passthrough'/>

Another example is how time-consuming it was to automate the installation of the Kata

containers and dependencies with Ansible after having done it manually. Thankfully, in

the end, I understood and got familiar with Ansible. Moreover, when I thought I was

about 90% done with the project, there was still around 50% left somehow.

I am very grateful for doing this project, not only for sharpening my Linux toolkit but

also for working with and understanding Kubernetes in depth. I consider the latter a big

milestone and I expect it to help me in my future career.

49

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Methodology
	1.5 Thesis Contributions
	1.6 Plagiarism Declaration
	1.7 Thesis Structure

	2 Background
	2.1 Isolation mechanisms
	2.1.1 Virtual Machines
	2.1.2 Containers
	2.1.3 Other isolation mechanisms

	2.2 Container Orchestration
	2.2.1 Docker Swarm
	2.2.2 Kubernetes

	2.3 The Continuum Framework

	3 Design
	3.1 Infrastructure and Orchestration Requirements
	3.1.1 Infrastructure Requirements
	3.1.2 Orchestration Mechanism Requirements

	3.2 Design of Benchmarks
	3.2.1 Design of Startup Performance Benchmarks
	3.2.2 Design of Scalability Benchmarks
	3.2.3 Design of Resource Usage Tests

	4 Implementation
	4.1 Runtime Implementation
	4.1.1 Automating the installation of Kata Containers
	4.1.2 Kata containers as Kubernetes runtime

	4.2 Implementing kata-runtime Value Retrieval
	4.3 Benchmarks implementation

	5 Evaluation
	5.1 Benchmark results and evaluation
	5.1.1 Evaluation of Startup Performance
	5.1.2 Evaluation of memory usage
	5.1.3 Evaluation of CPU usage

	5.2 Reporting Negative Results
	5.3 Limitations and Threat to Validity
	5.4 Summary

	6 Related Work
	7 Conclusion
	7.1 Answering Research Questions
	7.2 Limitations and Future Work

	References
	A Reproducibility
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.3.1 How to access
	A.3.2 Software dependencies

	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes

	B Self Reflection

