
Exploring the Performance-Isolation Trade-off for Isolation Mechanisms

Antonios Sklavos
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
a.sklavos@student.vu.nl

Matthijs Jansen
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

m.s.jansen@vu.nl

Animesh Trivedi
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

a.trivedi@vu.nl

Abstract

Isolation mechanisms can be traced to the early days of com-
puting, where processes shared hardware resources and in-
teracted with other processes. Gradually, the emergence of
virtual machines as we know them today made it possible
to provide a complete simulation of the host hardware to
a virtualisation-agnostic guest operating system. Nowadays,
isolation mechanisms play an important role in cloud comput-
ing’s resource pooling needs, where customers expect com-
plete isolation and maximum performance. Different isolation
needs and choices have led to different implementations of
mechanisms that minimise the isolation overhead and max-
imise performance. This survey briefly overviews commonly
used mechanisms and identifies compromises made to balance
performance and isolation.

1 Introduction

The concept of virtualisation can be traced to the late 1950s’
where tools like Multics introduced the notion of multipro-
gramming [46] [44] [18]. There, a privileged kernel was re-
sponsible for managing hardware resources and restricting
access to any software outside of it, essentially providing an
early form of isolation [46]. Nowadays, one of the driving
forces of isolation is the realisation of a fair environment
among cloud computing tenants [60].

Isolation is a general term that can be broken down into the
three specific notions of Security isolation, Fault isolation and
Performance isolation (Table 1). Security isolation involves
the mechanisms and policies that limit access between differ-
ent guests and the host machine [54]. As such, a malicious
program will be confined to its own environment and will
be unable to harm the host or other guests. Fault isolation
refers to the ability to confine the fault of a virtual machine in
order to stop it from interfering with other virtual machines
or the host: an (accidental) failure of a guest should not affect
the whole system or other hosts. Performance isolation is
concerned with fairly distributing the host resources to the

Isolation Kind Description Example

Security
Isolation

Restrict access
between
processes

chroot Unix
operation

Fault Isolation Limit the impact
of failures

Using a separate
kernel for every
isolation unit

Performance
Isolation

One’s usage does
not affect the
performance of
others

cgroups Unix
tool

Table 1: Comparison of isolation types

guests so as not to benefit a single one, for example, due to
guests going over their quotas [60].

Isolating processes from different users is challenging with-
out compromising performance, and no one-solution-fits-all
mechanism exists. In security-critical scenarios, full virtuali-
sation, where processes are isolated in separate, virtualised
and unmodified operating systems, can offer a solution. Per-
formance overhead is unavoidable in this case, stemming
from the abstraction of virtualisation: The hypervisor which
manages the virtualised operating system is an intermediary
that must handle the translation of virtualised instructions to
physical ones. On the contrary, having relaxed security re-
quirements offers the ability to limit some isolation-related
overheads (for example, the need for separate operating sys-
tems for different users). Consequently, performance and iso-
lation can be contradictory, forming a decision dilemma for
isolation mechanism designers. While isolation is a qualitative
measure (in contrast to quantitative performance), compar-
ing different mechanisms and gaining insight into how they
implement their notion of isolation is possible.

The challenges above lead us to explore surveys and publi-
cations related to open-source isolation mechanisms in order
to answer the following research question:



RQ1: How do isolation mechanisms balance the trade-off
between performance and isolation?

We find this research question valuable due to the knowl-
edge gap it fills: it is often vague how different implementa-
tion decisions affect the trade-off. Additionally, answering
the question can contribute to informed decision-making for
those interested in using such tools.

Surveys are a great way to answer such questions. Although
many surveys examine a combination of the isolation mech-
anisms presented below, advances in cloud technology and
infrastructure make an updated overview necessary. In con-
trast to most surveys, we are interested not in a purely nu-
merical performance difference but in the underlying reasons
contributing to the different levels of isolation, which is at
odds with performance.

A contribution of this survey is reaffirming the conclu-
sion that different scenarios favour different tools. We found
that ease of use is an important variable regarding isolation
mechanisms. That led us to produce a performance-isolation-
usability graph for each tool, which visually encapsulates this
survey’s findings.

The survey is organised as follows: Section 2 goes over re-
lated surveys in the literature. Section 3 explains our method-
ology. Section 4 presents an overview of four different cate-
gories of isolation mechanisms. In the four Sections following,
we present representative examples of mechanisms of each
category: Hypervisors (Section 5), Containers (Section 6),
Secure Containers (Section 7) and Unikernels (Section 8). A
conclusion is provided in Section 9.

2 Related Surveys.

For each of the surveys mentioned below, ranked by their re-
spective number of citations on Google Scholar, we provide a
small introduction and a comparison with the present survey.
While they all touch upon isolation in virtualisation, none ex-
plicitly discusses the trade-offs of isolation and performance
of all the tools we mention in Section 4.

Virtualization: Issues, security threats, and solutions.
The survey by Pearce et al. [44] provides the basic concepts
of virtualisation, discusses a threat model, and proposes solu-
tions. Compared to our survey, it does not focus on a specific
technology; it analyses virtualised platform threats in a gen-
eral fashion. A contribution of this survey is the recognition
that the implicit trust operating systems show to hardware
is a vulnerability when it comes to virtualisation since the
physical hardware is emulated to a degree by software.

Container Security: Issues, Challenges, and the Road
Ahead. The survey by Sultan et al. [57] focuses exten-
sively on containers and their security issues. It presents a

broad view of the various mechanisms that enable the con-
tainers’ operation and how different protection requirements
lead to solutions.

A study of security isolation techniques. A significant
contribution of this survey [54] is the classification of differ-
ent isolation techniques into a hierarchy. Compared to the
other related surveys, compiler and code rewriting techniques
are mentioned. Additionally, the trade-offs concerning speed
are discussed in a few use cases. While the survey is very
extensive in the techniques it mentions, the detail of them can
be considered lacking. Additionally, advances in the virtu-
alisation field have led to the current emergence of popular
tools (e.g. Firecracker (Section 5.4) and Kata Containers (Sec-
tion 7.1)), which did not exist when the survey was conducted.

Virtualization in Cloud Computing: Moving from Hy-
pervisor to Containerization—A Survey. The survey by
Bhardwaj et al. [6] explores the emergence of containerisation
and how it aims to be a better alternative to VMM solutions.
Additionally, it compares the performance of different hyper-
visor and container technologies. It is important to note that
there is a lack of modern isolation mechanisms specifically
designed for cloud computing, such as Firecracker.

Security Issues and Challenges for Virtualization Tech-
nologies. The hypervisor-security-focused survey by
Sierra-Arriaga et al. [55] provides a classification of the se-
curity issues that specifically arise from virtualisation. Per-
formance is very briefly discussed as it is not the survey’s
focus.

An Exhaustive Survey on Security Concerns and Solu-
tions at Different Components of Virtualization. With a
focus on hypervisors, this survey [43] provides an overview
of the various virtualisation-specific attacks and organises
said attacks into a taxonomy. An extensive list of Xen (Sec-
tion 5.5) and KVM (Section 5.3) recorded vulnerabilities are
mentioned. Additionally, the solutions to those vulnerabilities
are reviewed while discussing their limitations. The perfor-
mance of isolation mechanisms is not the primary concern.

The Serverless Computing Survey: A Technical Primer
for Design Architecture. The work of Li et al. [30] is an
updated overview of the architecture of common virtualisation
mechanisms used in cloud environments. It judges tools not
only by their performance (boot times) and isolation but also
by their flexibility. The survey’s scope of view of isolation
mechanisms is through serverless functions, which, while a
big part of virtualisation, is not the only one.

2



A Fresh Look at the Architecture and Performance of
Contemporary Isolation Platforms. The review of van
Rijn et al. [59] laid the foundation for the classification of
the isolation mechanisms as mentioned in section 4 of this
survey. Additionally, it classifies the isolation of those mech-
anisms based on the metric of the Horizontal Attack Profile
and extensively compares their performance. It only gives
an overview of some tools and does not explain the reasons
contributing to their performance and isolation.

3 Survey Methodology

In this section, we describe the survey methodology we fol-
lowed. We wanted to research the performance and isolation
of isolation mechanisms and searched for papers on this topic;
we started with a few like [36] and [2]. We identify the fol-
lowing fundamental isolation mechanisms, explained in the
next section, and find established systems such as QEMU
(Section 5.2) and Xen (Section 5.5) for VMMs, and Docker
Containers (Section 6.1) and LXC (Section 6.2) for contain-
ers; paper citations on Google Scholar and publishing or-
ganisations’ reputation were taken into account in our paper
selecting process.

Having decided on the tools to mention based on reputation,
prominence, and influence on other tools, we studied exten-
sively relevant papers in order to get a deep understanding
of their architecture. After careful evaluation, we determined
that certain papers were outdated and subsequently excluded
them from our analysis.

4 Overview of Current Landscape of Isolation
Mechanisms

In the next four sections, we go through the four major cate-
gories of Isolation mechanisms, as defined by [59] (summary
in Table 2):

Hypervisors, which enable virtualisation. With virtuali-
sation, virtual machine monitors (VMMs - also known as
hypervisors) present a software abstraction of physical ma-
chines to virtual machines; virtual machines contain their own
operating system with all dependencies needed to execute a
process in an isolated execution environment.

Containers, which utilise (mostly) Linux mechanisms to
sandbox processes. Containerisation (also known as OS-level
virtualisation) is a technique that emerged as an alternative
to virtual machine monitors; Container technologies sandbox
user-level processes with techniques such as filtering system
calls and limiting access to hardware and software resources.

Secure containers, which try to balance the performance
of containers with the isolation of hypervisors. While virtual
machines and containers (in their simplest form) lie on op-
posing ends of the isolation-performance spectrum, attempts
to get the best of both worlds have been made by tools like

Kata containers (Section 7.1) or by running containers inside
virtual machines.

Unikernels, which are single-address space machine im-
ages built by compiling applications and linking them with
libraries that provide OS functionality. Unikernels are opti-
mised for single-purpose applications.

For each isolation mechanism we have identified, we go
through its limitations and strong points, and additionally, we
try to answer RQ1, namely, how it balances isolation and
performance.

Category Approach Performance -
Isolation

Hypervisors Simulate
Hardware

Simulating
hardware can
add performance
overhead;
Isolation
increases.

Containers Sandbox
processes that
share same
kernel

Performance
overhead
minimised;
Isolation can
suffer.

Secure
Containers

Isolation of
crucial
components
through
hardware
mechanisms

Performance
generally worse
than containers;
Isolation
improved.

Unikernels purpose-built
machine images
build with library
os’s

application-
specific
optimisations
limit hypervisor
overhead.

Table 2: Software Isolation Approaches

5 Hypervisors

Broadly speaking, hypervisors (also referred to as Virtual
Machine Monitors - VMMs) are pieces of software (also
firmware or hardware) that enable the operation of virtual
machines by making the hardware resources of their hosts
available to them [55]. Having privileged access to hardware
resources, they act as an intermediary between the hardware
and virtual machines and have the ability to enforce security
and performance policies [56] [18]. The VMMs are expected
to behave similarly to physical hardware [44]; they export an
abstraction of the physical hardware that enables any software
to run on the hardware to be also able to run on the abstrac-
tion [18]. The isolation they offer between different systems

3



Performance Isolation

Ease of Use

Strong

Weak

Xen

Performance Isolation

Ease of Use

Strong

Weak

Firecracker

Performance Isolation

Ease of Use

Strong

Weak

KVM

Performance Isolation

Ease of Use

Strong

Weak

QEMU

Figure 1: Qualitative Comparison of Hypervisors

is arguably their most important contribution [56]. As hyper-
visors are made to serve different objectives by organisations
and groups with varying goals, many of their concepts can
differ [56].

Hypervisors offer great convenience of use, which is a
significant advantage for their users since they require no
modification to the guest’s VM image [22]; as a result, one
can deploy the same VM image on different VMMs. They
allow for a high degree of isolation between the hardware and
the virtual machine, as well as between different software on
the same hardware [44].

A significant disadvantage comes from the isolation itself:
having each VM carry its copy of the OS and other resources
limits the number of VMs one can deploy on the same system
[57]. Additionally, the abstraction of the hardware that the
VMM provides creates an overhead that a higher layer of
software will not be able to remove [31].

Figure 1 contains one graph for each of the hypervisors
mentioned below. The diagrams aim to visually compare the
three tools extracted from the cited papers and offer a qualita-
tive comparison. It is important to note that the assessments of
usability and isolation in the graphs are qualitative in nature
and do not involve quantitative measurements. The axis ‘ease
of use’ represents the amount of modifications a piece of soft-
ware needs to be deployed on a tool; for example, QEMU can
run processes in a variety of different CPU architectures and
requires no modification to a virtual machine image (for the
most part). On the contrary, MirageOS (Section 8.3), a Uniker-
nel, requires porting to software to the OCaml programming
language - a great barrier to adaptation.

Hypervisor
Name

Developer Host OS Notable
Features

QEMU QEMU team Windows,
Linux,
MacOS,
Solaris,
FreeBSD,
OpenBSD,
BeOS

Focus on
feature com-
pleteness

KVM Linux Kernel
Community

Linux,
FreeBSD,
illumos

near-native
performance
due to
hardware
virtualisation
extensions
support

Firecracker AWS
developers

Linux purpose-built
for serverless

XEN Linux
Foundation,
Intel

Linux Para-
virtualisation
support

Table 3: Hypervisors Overview

To conclude, Firecracker displays the best balance of Hy-
pervisors: While it lacks device emulation and supports only
(modern) Linux and OSv guests, it is optimised for perfor-
mance and goes above and beyond in the domain of isolation.
KVM has been known to be challenging to operate as a stan-
dalone solution, and it is common to use it in combination
with other tools, like QEMU. Similar graphs are provided in
each category of isolation mechanisms.

Type-1 and Type-2 Hypervisors. Historically, Hypervi-
sors have been categorised in Type-1 (bare metal) and Type-2
(hosted) (Figure 2) [19] [44]. On the one hand, classic System
VMMs (Type-1) are placed on bare metal with the utmost
privileges (the guests run with fewer privileges); they are
responsible for intercepting the system calls that virtual ma-
chines make concerning system access [56] [39]. On the other
hand, hosted VMs (Type-2) are no more than programs in-
stalled in an operating system (host), which they use to get
access to system drivers [56]; due to the additional level of
abstraction [22], a performance penalty might be introduced.

As hypervisors have gotten more complex, the distinctions
become increasingly unclear; for example, KVM (Section 5.3)
can be seen as turning the Linux kernel into a Type-1 hyper-
visor.

Paravirtualisation. Paravirtualisation refers to a technique
where the guest OS is modified, making it aware of its vir-
tualised nature; this allows better performance by offloading
tasks from the guest domain to the host domain [38] [22].

4



Hardware

Host OS

Hypervisor

Type-2

VM

Application

Libraries / 

Dependencies

Guest OS

VM

Application

Libraries / 

Dependencies

Guest OS

Hardware

Hypervisor

Type-1

VM

Application

Libraries / 

Dependencies

Guest OS

VM

Application

Libraries / 

Dependencies

Guest OS

Figure 2: Type-1 and Type-2 Hypervisors Architecture

While it offers performance gains, the requirement for guest
OS modification can be an obstacle. It is thus a trade-off
between performance and portability [46].

5.1 A Primer on Hypervisor Attack Surface
Below we introduce some areas of Hypervisors’ attack surface
as found in the literature [58] [43] [45].

VM exits. Arguably, VM exits are the most significant hy-
pervisor attack surface [58]. VM exits occur when the hyper-
visor stops the VM execution and handles host OS operations;
different situations can lead to different VM exists. VM exists
are very frequent and occur even when the VM is idle. Thus,
the VM communicates with the host os indirectly through
the hypervisor. Consequently, it constitutes an attack surface
since it offers a window of communication between the VM
and the hypervisor; A malicious VM process can exploit a
hypothetical bug in how a hypervisor handles certain events.

Virtualised devices. Virtualised devices can pose a threat
to virtual machine hypervisors [45] [55]. They are abstrac-
tions made to emulate physical devices and, as such (being
software), can be exploited; for instance, an attacker could use
a virtualised network interface card vulnerability to intercept
network traffic from other VMs. Notably, device emulators,
such as printers, mice, VGA Etc., are not needed in cloud
environments and are usually removed to minimise vulnera-
bilities.

Large TCB. A large Trusted Computing Base, that is, the
components critical to a machine’s security, can expose a sig-
nificant attack surface; the need for Hypervisors to provide
some OS functionality directly influences this [2]. The pre-
sumption that the OS trusts the hardware no longer holds; the

hardware is now the VMM which the OS should not fully
trust [55] [44]. The break in trust creates a significant vulner-
ability for the OS, making the VMM a single point of failure
which can lead to disastrous results [44].

5.2 QEMU
QEMU [4] is one of the most common hypervisors due to
its free and open-source nature and feature completeness. It
can leverage KVM (see 5.3) to enable hardware-assisted vir-
tualisation. Additionally, it offers emulation of various CPU
instruction sets and devices. Due to its flexibility and features,
QEMU has been used as the foundation for other projects,
like Kata Containers (Section 7.1) [2].

The abundance of emulated devices is a double-edged
sword: while contributing to feature completeness, they sig-
nificantly enlarge QEMU’s attack surface. QEMU has been
criticised for its large and complex codebase (> 1.4 MLOC),
and there have been (unsuccessful) attempts by third parties to
provide a stripped-down version of QEMU [2]. Contributing
to its large attack surface, QEMU’s large codebase further
decreases its performance-isolation score.

5.3 KVM
KVM is a loadable Linux kernel module which has been part
of Linux since version 2.6.20 (February 2007) [25] [49] [45].
It can utilise supported x86 processor virtualisation technolo-
gies, like direct memory access [38], to offer near-native ma-
chine performance. With KVM, Linux becomes a type-1 hy-
pervisor, and every virtual machine is implemented as a Linux
process [15].

Since I/0 emulation is notoriously underperforming [25],
KVM supports paravirtualised devices using virtio [50]; it
can also emulate I/O devices with the support of QEMU [15].
While KVM has been praised for its overall performance, it
has been criticised for its configurability [15]. KVM imple-
ments isolation and security with a combination of sVirt and
SELinux [49], and each VM in KVM is run with its own
kernel [9]. SELinux is a Linux Security Module [64], a frame-
work which allows the placement of ‘hooks’ just before access
to important system calls in order to enforce security. Initially
developed by the NSA, It offers Role-Based Access Control
and Type Enforcement. Optionally, it supports Multilevel se-
curity [64]. sVirt extends SELinux’s capabilities, allowing
Mandatory Access Control (MAC) security to be applied to
guest VMs and preventing manual labelling errors [51].

5.4 Firecracker
Firecracker is a hypervisor developed by Amazon to serve
their serverless infrastructure needs. It allows the creation of
microVMs with negligible CPU and minimal (9MB per VM)
overhead; a full-fledged microVM can be launched in less

5



than 125ms [2]. Google’s crossvm (Paragraph 5.6.2) served
as the initial building block of the project; KVM is also used
due to its code maturity and performance.

Firecracker is optimised for serverless deployments [35];
for example, it cannot boot arbitrary kernels, it does not offer
a BIOS, and it does not support VM migration [2]. Moreover,
very little device emulation is provided; the only included de-
vices are network and block devices, serial ports, and a partial
PS/2 keyboard emulation. The above choices are appropriate
and permissible due to Firecracker’s serverless-first focus;
it is actively used in production as the backbone of AWS
Lambda. In a nutshell, Firecracker compromises on flexibil-
ity and feature completeness in order to focus on overhead,
security and fast startup.

Security is of paramount importance for Firecracker, and
extensive caution has been taken to maximise it. Mutually dis-
trusting users deploy on AWS Lambda and expect their code
and data to be inaccessible to other users. As a first example,
Firecracker removes support for legacy drivers since they can
pose a security vulnerability which a malicious VM could
potentially leverage to gain access to the host system. Next, it
eliminates potential security issues by only supporting recent
kernel versions (v4.14+). Additionally, Firecracker was imple-
mented using the (memory-safe) Rust programming language
to guarantee memory safety. Its minimalist implementation
can further reduce the attack surface.

To further secure the platform, known side-channel attack
vulnerabilities taken advantage of by exploits such as Spec-
tre [27] are mitigated with techniques such as disabling Hyper-
Threading and disabling swap and kernel same-page merging.

The above approaches do not impact performance while
significantly isolating the virtual machine from the host. Op-
tionally, one can further isolate a Firecracker virtual machine
using the provided jailer process, which applies a wrapper
to Firecracker and places it into a sandboxed environment
isolating it and dropping privileges.

5.5 XEN

Xen is a very popular isolation mechanism with widespread
production use; it can operate in full virtualisation mode,
paravaritualisation or other variations [36] [14] [9] [67]. Xen
has kept the Application Binary Interface unaltered to allow
guest applications to run without changes [46]. Here we focus
on its paravirtualised capabilities, which were the focus of
its very influential introduction paper [3]; Full virtualisation
mode on Xen uses Qemu to emulate devices [67].

Paravirtualisation refers to an abstraction that allows im-
proved performance (compared to full virtualisation) at the
cost of having to modify the guest OS image (albeit not the
guest applications) [3]. Paravirtualisation does not require
CPU-supported virtualisation extensions, making it possible
to run on hardware that does not support virtualisation [67].
Support for full virtualisation was never part of the x86 archi-

tectural design (see contradiction), which requires overhead-
inducing handling and the addition of extra complexity [3].

Security and isolation. Xen version 4.5 introduced Vir-
tual Machine Introspection (VMI), a technique that allows for
monitoring the activity of a VM by an external tool with min-
imal overhead [18]. More specifically, this allows the VMM
to act as an intrusion detection system while evading attacks
targeting those systems; it uses hardware-level state and inter-
rupts (can be observed from outside of VM) to interpret them
into os-level semantics [18].

Arguably, when multiple VMs are operating in a machine,
it is not enough to just fairly allocate resources between VMs,
since device drivers’ consumption from the hypervisor at the
request of VMs can break performance guarantees. The work
of [21] introduces a toolchain (metrics aggregator, scheduler
and control mechanism) that enables the monitoring of total
resource usage of VMs and, thus, enforcement of resource
isolation guarantees.

Performance. One study found that the Unikernel benefits
come at zero to little cost to performance in all cases [33].
A different study showed that Unikernels are an option for
replacing containers by placing language runtimes into a hy-
pervisor [34]

5.6 Notable mentions

The following two isolation mechanisms came up during
our research. However, their trade-off between isolation and
performance could not be sufficiently appraised due to very
limited published research based on them.

5.6.1 Cloud Hypervisor

Cloud Hypervisor is a Virtual Machine Monitor optimised for
cloud workloads [23]. Being implemented in Rust, it extends
its capabilities to address the broader requirements of cloud
environments. One of its notable advantages over Firecracker
is the expanded support for device emulation, enabling seam-
less integration with a broader range of hardware components.
Additionally, in contrast to Firecracker, it can be run on Win-
dows.

5.6.2 crosvm

crosvm is a KVM-based virtual machine monitor developed
by Google. It is primarily utilised as the primary virtual ma-
chine monitor of ChromeOS. It served as the foundation of
Firecracker after vigorous refactoring; for example, device
emulation was restricted [2].

6



Tool Name Developer Host OS Notable
Features

Docker Docker, Inc. Windows,
Linux,
MacOS

Robust
ecosystem

LXC Virtuozzo,
IBM, Google
and
individuals

Linux Focus on
system
containers
that provide a
VM-like
environment

OpenVZ Virtuozzo,
OpenVZ
community

Linux guests
individually
implement
filesystem
and network
functionality

Table 4: Containerisation Solutions Overview

6 Containers

Containers allow programs to run in isolated environments,
sharing the host operating system kernel, filesystem and re-
sources [57] [37] [38]. They originally came into view to
replace VMs as faster alternatives [57].

Containers use a combination of Linux kernel extensions
and other tools to confine processes into their own execution
environment. Most notably, kernel namespaces can be used
to limit the resources (e.g. process ids, file names) that a
process has access to. cgroups is responsible for limiting the
resource usage (e.g. CPU, disk access) of a process. chroot,
is a Linux tool that restricts a process’ access to a specific
directory. In fact, chroot, as well as FreeBSD jails, can be
regarded as early forms of containerisation. Figure 3 shows
the general architecture of Containers.

Containers can offer advantages in the performance do-
main: network, disk, computing, and memory performance
overhead can be zero to little [66] [40]. In fact, their over-
head can be so small that the performance can be comparable
with the equivalent bare-metal one [6]. This is a direct con-
sequence of the shared kernel: the syscall execution path is
shortened [37]. Due to their more negligible overhead com-
pared to VMMs (albeit not in every case [31]), they allow for
increased density - the amount of isolation unit instances that
a machine can host, as well as smaller disk images [40]. More-
over, an advantage of containers over other isolation methods
is the ease of deploying different versions of the same appli-
cations they provide [37]. Finally, containers provide efficient
resource use by avoiding code duplication [37].

Containers do not come without disadvantages. Isolation is
typically limited (compared to Hypervisors 5); for example,
if a container stresses the kernel with system calls, it will not
be able to handle system calls from other containers (perfor-

Hardware

Host OS

Container Engine

Host OS Libraries

Container

Application

Libraries

Container

Application

Libraries

Figure 3: Container Architecture

mance isolation). A malicious container can take advantage
of this by causing a denial-of-service attack [36] (security iso-
lation); Overprovisioning can lead to DoS attacks also [44].
Due to its shared nature, a compromised kernel affects all
containers [38]. Additionally, they are generally stateless (no
direct memory sharing) [53]; clearly, the goal of isolation is
incompatible with the concept of sharing memory. In their
case, isolation is understood to be lacking enough that de-
ploying a container inside a hypervisor has been common
practice [36] [38] [8].

Containers suffer from slow cold start times (for example,
when scaling) [53], which can be avoided by recycling old
containers, further sacrificing isolation. Notably, it has been
argued that the only way to guarantee container threat con-
tainment is to use full virtualisation instead (Section 5) [39].
Non-namespace-aware system calls originating in containers
are a significant susceptibility for containers since they can
expose sensitive information [52]. While tools like Docker
(Section 6.1) and LXC (Section 6.2) are versatile and easy to
use, that comes at the cost of decreased security [40], demon-
strated by side-channel attacks like Spectre [30].

Comparing the two tools (Figure 4), they display similar
performance overall (LXC boot-up time is inferior [59]), but
docker shows increased attack surface due to its enlarged
toolchain [10]; docker is supported on all major platforms (in
contrast to LXC) and is well documented and supported.

6.1 Docker containers

Docker is a prevalent containerisation platform. It uses the
runc container engine [8]. Docker is notable for its ease of

7



Performance Isolation

Ease of Use

Strong

Weak

LXC

Performance Isolation

Ease of Use

Strong

Weak

Docker

Figure 4: Qualitative comparison of Containers

use and near-zero performance overhead, which directly con-
tributed to its popularity [40] [59] [37]. Early versions of
docker built upon the LXC (Section 6.2) container runtime [5].
While Docker is marketed as a microservices orchestration
platform, many developers use it to boost their productiv-
ity [37].

The containerised applications share the host OS kernel,
which is responsible for providing isolation with tools like
namespaces and cgroups [37] [57]. In addition to the above,
kernel Capabilities are used, which allows limited access
to objects managed by the kernel and Apparmor, which limits
the resources available to programs. Moreover, a small portion
of system calls is blacklisted using a seccomp profile [57].

While Docker (and containerisation platforms in general)
display minuscule overhead, this usually comes at the cost
of isolation. First and foremost, the shared kernel becomes a
single point of failure: a potential kernel security breach can
affect the total amount of containers deployed on the host [38].
Also, since docker containers run in user-space (privilege
ring 3 [1]), any other application could potentially disrupt
them [38]. Notably, the whole Docker toolchain constitutes
its attack surface [10], for example, by the widespread practice
of using external dependencies (docker images) which end up
in production code [37].

6.2 LXC

Linux Containers (LXC) is a low-level container runtime that
utilises Linux Kernel features like namespaces, cgroups and
capabilities to containerise applications [8] [16] [15] [32]. Its
main difference with Docker (Section 6.1) is its ability to sim-
ulate a standard Linux environment closely [59]. As a result,
it makes it easy to create multiple execution environments
within a single OS [48].

Linux containers suffer from weak isolation: applications
are inherently more isolated when deployed on VMs (Sec-
tion 5) compared to having to share the same kernel. This
can lead to scenarios where an application leaks sensitive
information through system calls [15].

Performance Isolation

Ease of Use

Strong

Weak

gVisor

Performance Isolation

Ease of Use

Strong

Weak

Kata Containers

Figure 5: Qualitative comparison of Secure Containers

6.3 OpenVZ
OpenVZ is another commonly used containerisation technol-
ogy similar to LXC.

Virtual Private Servers (VPS) serve as the underlying ab-
straction of isolation. OpenVZ uses user-level tools and a
modified kernel to operate [9]. The modified kernel traps sys-
tem calls and rewrites the results [12]. It differs from LXC
and Docker containers since the guests individually imple-
ment filesystem and network functionality, among others [54].
OpenVZ enforces performance isolation by assigning an I/O
priority in its I/O scheduler [9].

7 Secure Containers

Secure containers (also mentioned as sandboxed container
technologies) are security-oriented containerisation platforms.
They aim to balance performance and isolation using ker-
nel features like namespaces and leveraging hardware-based
isolation [59]. Even though Secure containers advertise
container-like performance, in most cases, they perform worse
than containers and VMMs - especially regarding I/O opera-
tions [59].

We mention Kata containers (Section 7.1) and gVisor (Sec-
tion 7.2). Comparing the two (Figure 5), Kata containers blend
in the container ecosystem by design, getting an increased
ease of use rating.

7.1 Kata containers
Kata Containers is a tool that aims to combine the benefits
of VMs and containers in a single solution [47] [16] [24].
Each workload is run in a container and further isolated in
its separate VM (and thus separate kernel - the containers’ 6
largest attack surface) [47] [61]. Kata containers is essentially
a container-optimised VM [61]. It is the combined result of
Intel Clear Containers with Hyper runV.

Its runtime, kata-runtime, supports the industry-standard
OCI container format allowing it to work seamlessly with
Docker [16]. It isolates network, I/O and memory due to

8



Tool Name Developer Host OS Notable
Features

Kata
Containers

OpenStack
Foundation
community

Linux containers
wrapped in
lightweight
vms

gVisor Google Linux custom
user-space
kernel that
intercepts the
containerised
applications’
system calls

Table 5: Secure Containers Overview

Hardware

Host OS

Hypervisor

VM

Container

Process

Guest OS

Dependencies

VM

Container

Process

Guest OS

Dependencies

Figure 6: Kata Containers Architecture

workloads running in separate kernels while utilising CPU
VT extensions for isolation. The most fundamental way it
balances performance with isolation is by using a lightweight
VMM by default (QEMU/KVM). Additionally, it employs
an optimised hardware passthrough implementation allowing
the VMs to communicate efficiently with devices [47].

Kata Containers has been criticised in the literature. More
specifically, its assumption that virtual machines are secure
enough and one only needs to worry about their performance
is questionable [46]. Additionally, in practice, overloaded con-
tainers stress kata-runtime significantly [61]. Finally, the
isolation Kata containers offer in practice has been criticised
as weaker than Google gVisor (Section 7.2) [61].

7.2 Google gVisor
Google gvisor is a user-space kernel; it intercepts the con-
tainerised applications’ system calls in order to isolate them
further (essentially providing some OS functionality in user-
space) [16] [8] [2] [20]. Since it intercepts application system
calls, there is no need for a hypervisor; thus, it is a different
approach from the ones mentioned above [16]. Each container
is run with its own kernel (Sentry), which implements a large
amount of the available system calls [16] [8]. Like Kata Con-
tainers 7.1, its runtime (runsc) is OCI-compliant allowing
for easy Docker 6.1 integration [68].

Compared to Docker’s runtime engine (runc), the runsc
engine is more isolated: the application inside the container
has no direct access to the host kernel but only to Sentry
[8]. Consequently, gVisor achieves better security; When a
Sentry breach occurs, an attacker can only access a user-space
process (whose possible system calls are limited) [68].

The approach of Google gVisor does not come without
disadvantages. Applications that use system calls that Sentry
has not implemented cannot run on the platform [16]. Having
Sentry provide some OS functionality on user-space makes
for a more complex design than standard containers while
still depending on the same kernel functionality they depend
on [8].

Performance-wise, Google gVisor has been shown to lack
significantly compared to traditional containers; simple sys-
tem calls are more than twice as slow [68]. Moreover, I/O on
an external tmpfs can take 216 times longer [68].

To conclude, gVisor improves the isolation of containers by
significantly decreasing the host system’s and the containers’
shared resources and by managing the container resources
dynamically using the Gofer and Sentry modules [61]. The
increased isolation comes with a significant performance over-
head [61]. Thus, once more, containerisation comes at a high
cost [68].

8 Unikernels - Paravirtualisation

Unikernels are single-purpose programs built by compiling
the entire software stack into an image, linking libraries that
provide functionality which the OS would traditionally pro-
vide. The produced images are single-address space appli-
cations that can be run by a hypervisor or directly on hard-
ware (Figure 7) [37]. Unikernels contain only the operating
system and application code necessary to run a specific ap-
plication [36]. Due to their small performance overhead and
footprint, Unikernels can be deployed to various domains,
from edge microservices to desktop applications [41].

Comparing the 3 Unikernels we mention below (Figure 8),
OSv (Section 8.1) gets assigned the best ease of use score
without requiring modifying virtual machine images. Mira-
geOS (Section 8.3) requires porting software to the OCaml
programming language, making it troublesome to put into

9



Hardware

Hypervisor

VM

Application

Kernel

VM

Application

Kernel

Figure 7: Unikernel Architecture

Tool Name Developer Focus

OSv Cloudius
Systems

cloud computing-
focused
Unikernel

IncludeOS IncludeOS AS IoT-focused
Unikernel for
C++ services

MirageOS open-source
community

type-safe Xen
images

Table 6: Unikernels Overview

service.

Unikernel Architecture. Here, we briefly describe the ar-
chitecture of Unikernels. First, the configuration of the image
is part of the compilation, reducing overhead since options are
programmable and thus can be type-checked and statically
analysed [33]. Second, the architecture allows for system-
wide optimisations since linked libraries provide the os func-
tionality; the linker has knowledge of which libraries must be
included and can provide further optimisations. Last, Uniker-
nels rely on the hypervisor as the sole means of isolation since
they are tailored to specific applications. They utilise protocol
libraries to enable applications to trust external entities.

Unikernel Security. To ensure security, due to their de-
sign, unikernels allow the following optimisations for secu-
rity: They use sealing to ensure that the binaries only contain
code available during compilation, making them less vulnera-
ble to code injection attacks [33]. They employ address space
randomisation at compile time to make it more difficult for
attackers to predict the location of critical system components.
The interface has fewer Linux system calls, thus reducing the
attack surface [62]. Having a very lightweight design itself
minimises the attack surface exposed.

Performance Isolation

Ease of Use

Strong

Weak

MirageOS

Performance Isolation

Ease of Use

Strong

Weak

IncludeOS

Performance Isolation

Ease of Use

Strong

Weak

OSv

Figure 8: Qualitative comparison of Unikernels

Unikernel Performance. One study found that the Uniker-
nel benefits come at zero to little cost to performance in all
cases [33]. A different study showed that Unikernels are an
option for replacing containers by placing language runtimes
into a hypervisor [34].

Unikernels Critique. The current tooling available for
virtual machines is unsuitable for building lightweight and
responsive cloud services. It must be adapted for unikernels
or lightweight VMs to address memory density, performance,
and startup time [36]. Furthermore, They are usually tied to
a specific implementation language which can be limiting
in many scenarios. Porting an application to a Unikernel
model can be unwieldy, contributing to the Unikernels’ slow
adoption rate [41].

8.1 OSv

OSv is an open-source cloud computing-focused Unikernel
intended to run under a hypervisor [40] [42] [26] [65].

Its motivation comes from the observation that features
traditionally provided by operating systems, like hardware
abstraction, are already provided by cloud hypervisors; avoid-
ing providing the same functionality in an operating system
can avoid some functionality overlap and, thus, code duplica-
tion [26]. Taking direct influence from the theoretical back-
ground of Exokernel (Section 8.4), it takes the role of a library
operating system while the hypervisor takes the role of the
exokernel [26].

A significant advantage of OSv, compared to other tools

10



like MirageOS (Section 8.3), is its ability to run existing Linux
applications [26]. Another advantage is its support of several
hypervisors rather than targeting a single one; for example,
MirageOS exclusively targets Xen (Section 5.5). Moreover,
under specific circumstances, one study found it to perform
better than Docker (Section 6.1) and KVM (Section 5.3) [65].

8.2 IncludeOS
IncludeOS is a cloud and IoT-focused Unikernel for C++
services. It advertises a minimal footprint and is independent
of virtualisation platform [7].

Similar to most Unikernels, thanks to using statically linked
libraries, IncludeOS achieves true minimality: only things
needed are included. For example, a hello world IncludeOS
application run on QEMU has less than 1/3 of the memory
footprint of an equivalent Java program executed in the JVM
[7].

IncludeOS achieves isolation and performance mainly from
its zero-overhead principle; it compromises on features and fo-
cuses on specialisations. This limits its usability. For example,
Linux IRQ (interrupt requests) and Programmable interrupt
timers are entirely absent [7]. Its non-preemptive kernel re-
duces the usability of the Unikernel by making it unfit for
scenarios with real-time requirements. Another way it ap-
proaches security and isolation is by using only one network
driver (virtio), which reduces the attack surface it exposes.

8.3 MirageOS
MirageOS produces unikernels by compiling OCaml code
into Xen Images [34]. It uses OCaml for the following two
reasons [33]:

• It provides concise syntax, which reduces the attack sur-
face.

• Since some Xen components are implemented in OCaml,
integration is easier.

One of the ways MirageOS approaches security isolation
is by reducing source-level backward compatibility [33]. Ad-
ditionally, the choice of type-safe OCaml prevents memory
overflows in I/O handling [33].

MirageOS has been shown to have little to zero penalties
in performance in all cases [33]. While providing type safety
and zero overhead, its single-language focus is a significant
obstacle to porting legacy code, directly impacting the tools’
potential adoption.

8.4 Notable mention : Exokernel
The work of MIT Parallel and Distributed Operating Systems
group, Exokernel, has had a significant influence on minimal-
istic kernel designs [36]. It takes an opinionated approach

to kernel design, where the OS abstracts as few resources
as possible, forcing application-level resource management.
This comes from the observation that the lower the level of
a primitive, the more efficiently it can be implemented [13].
Consequently, it provides applications with the ability to man-
age physical resources directly. [36] More specifically, the
kernel exports the hardware resources through an interface,
which library operating systems can interact with and create
system objects [13].

9 Conclusion

Compared to containers, virtual machines do not share the
host kernel [38]; Consequently, VMs are generally considered
more isolated and thus more secure [39]. Virtual machines,
compared to containers, offer slower boot times [39]. Due
to the isolation of VMMs, the overhead when sharing data
between the guest and the host (or other guests) is generally
noticeable [15] [38], especially when several virtual machines
are vying for the same resources [22]. However, the appli-
cation type can significantly influence the overhead of each
hypervisor [22].

While containers rose to prevalence as an alternative to
hypervisors, their isolation has been deemed unfit in many
scenarios, leading to the common practice of deploying con-
tainers inside virtual machines. As documented, surveys have
shown that many companies see the security of containers
as an obstacle to adoption [57]. At first sight, the solution
of blending containers and VMMs promises the best of both
worlds: Full isolation and zero performance overhead. Kata
Containers (Section 7.1) builds on this principle. This ap-
proach has been studied by [8], [38]. The practice above has
been criticised: performance impact is noteworthy in both con-
tainers and VMs, mainly in the case of I/O operations [15];
combining the above does not necessarily improve perfor-
mance while adding the overhead related to hypervisors.

To conclude, no perfect isolation mechanism exists for all
scenarios; Expert tuning is needed to minimise the main cul-
prit of performance: I/O operations [15]. Moreover, more
often than not, one has to take into account the variables of
ease of use and configurability of each tool [9]; for exam-
ple, KVM is notoriously hard to configure [15]. Advanced
tools like Firecracker (Section 5.4) and Kata containers (Sec-
tion 7.1) are opinionated and make compromises to favour
specific use cases. QEMU (Section 5.2), due to its supported
hardware architectures and available virtualised devices, is
one of the most feature-complete isolation mechanism avail-
able but suffers from a large attack surface. In the case of
isolation mechanisms optimisation, there is no such thing as
a free lunch [63].

11



9.1 Future Direction
WebAssembly is a bytecode format initially designed to sup-
port near-native speed in applications running on web pages.
A virtual stack machine reads and executes the instructions
in a memory-safe environment. Code from different, even
unsafe, programming languages such as C++ and Rust can
be compiled to WebAssembly and run in its sandboxed envi-
ronment. WebAssembly has gotten traction in the context of
isolation mechanisms; for example, Docker has started offer-
ing beta support for it [11]. Moreover, it has been adapted for
usage on the Edge [17].

WebAssembly has been criticised extensively, most notably
by Lehmann et al., [29] for bringing vulnerabilities considered
solved by natively compiled programs to the foreground. For
example, buffer overflow prevention mechanisms like stack
canaries are not utilised.

In their paper Will Serverless End the Dominance of Linux
in the Cloud? [28], Koller et al. make the observation that the
Linux kernel is making every effort to stay on top of isolation
techniques leading to an excessively complex database; its ab-
stractions are currently ill-suited for the serverless paradigm,
where the execution unit is not a traditional process. They
raise the argument for reconsidering the dominance of Linux
in the cloud and considering replacing it with Unikernels
(Section 8), which can offer OS functionality through library
operating systems.

References
[1] AALAM, Z., KUMAR, V., AND GOUR, S. A review paper on hypervisor

and virtual machine security. In Journal of Physics: Conference Series
(2021), vol. 1950, IOP Publishing, p. 012027.

[2] AGACHE, A., BROOKER, M., IORDACHE, A., LIGUORI, A., NEUGE-
BAUER, R., PIWONKA, P., AND POPA, D.-M. Firecracker:
Lightweight virtualization for serverless applications. In NSDI (2020),
vol. 20, pp. 419–434.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and
the art of virtualization. ACM SIGOPS operating systems review 37, 5
(2003), 164–177.

[4] BELLARD, F. Qemu, a fast and portable dynamic translator. In USENIX
annual technical conference, FREENIX Track (2005), vol. 41, Califor-
nia, USA, p. 46.

[5] BERNSTEIN, D. Containers and cloud: From lxc to docker to kuber-
netes. IEEE cloud computing 1, 3 (2014), 81–84.

[6] BHARDWAJ, A., AND KRISHNA, C. R. Virtualization in cloud comput-
ing: Moving from hypervisor to containerization—a survey. Arabian
Journal for Science and Engineering 46, 9 (2021), 8585–8601.

[7] BRATTERUD, A., WALLA, A.-A., HAUGERUD, H., ENGELSTAD,
P. E., AND BEGNUM, K. Includeos: A minimal, resource efficient
unikernel for cloud services. In 2015 IEEE 7th international conference
on cloud computing technology and science (cloudcom) (2015), IEEE,
pp. 250–257.

[8] CARAZA-HARTER, T., AND SWIFT, M. M. Blending containers and
virtual machines: a study of firecracker and gvisor. In Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (2020), pp. 101–113.

[9] CHE, J., SHI, C., YU, Y., AND LIN, W. A synthetical performance
evaluation of openvz, xen and kvm. In 2010 IEEE Asia-Pacific Services
Computing Conference (2010), IEEE, pp. 587–594.

[10] COMBE, T., MARTIN, A., AND DI PIETRO, R. To docker or not to
docker: A security perspective. IEEE Cloud Computing 3, 5 (2016),
54–62.

[11] DOCKER. Docker+wasm (beta). https://docs.docker.com/
desktop/wasm/.

[12] EMENEKER, W., AND STANZIONE, D. Hpc cluster readiness of xen
and user mode linux. In 2006 IEEE International Conference on
Cluster Computing (2006), IEEE, pp. 1–8.

[13] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE JR, J. Exoker-
nel: An operating system architecture for application-level resource
management. ACM SIGOPS Operating Systems Review 29, 5 (1995),
251–266.

[14] FAYYAD-KAZAN, H., PERNEEL, L., AND TIMMERMAN, M. Full and
para-virtualization with xen: a performance comparison. Journal of
Emerging Trends in Computing and Information Sciences 4, 9 (2013),
719–727.

[15] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RUBIO, J. An
updated performance comparison of virtual machines and linux contain-
ers. In 2015 IEEE international symposium on performance analysis
of systems and software (ISPASS) (2015), IEEE, pp. 171–172.

[16] FLAUZAC, O., MAUHOURAT, F., AND NOLOT, F. A review of native
container security for running applications. Procedia Computer Science
175 (2020), 157–164.

[17] GADEPALLI, P. K., MCBRIDE, S., PEACH, G., CHERKASOVA, L.,
AND PARMER, G. Sledge: a serverless-first, light-weight wasm runtime
for the edge. In Proceedings of the 21st International Middleware
Conference (2020), pp. 265–279.

[18] GARFINKEL, T., ROSENBLUM, M., ET AL. A virtual machine intro-
spection based architecture for intrusion detection. In Ndss (2003),
vol. 3, San Diega, CA, pp. 191–206.

[19] GOLDBERG, R. P. Architectural principles for virtual computer sys-
tems. Tech. rep., HARVARD UNIV CAMBRIDGE MA DIV OF
ENGINEERING AND APPLIED PHYSICS, 1973.

[20] GOOGLE. What is gvisor? https://gvisor.dev/docs/.

[21] GUPTA, D., CHERKASOVA, L., GARDNER, R., AND VAHDAT, A.
Enforcing performance isolation across virtual machines in xen. In
Middleware 2006: ACM/IFIP/USENIX 7th International Middleware
Conference, Melbourne, Australia, November 27-December 1, 2006.
Proceedings 7 (2006), Springer, pp. 342–362.

[22] HWANG, J., ZENG, S., Y WU, F., AND WOOD, T. A component-based
performance comparison of four hypervisors. In 2013 IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2013)
(2013), IEEE, pp. 269–276.

[23] HYPERVISOR, C. Documentation. https://www.cloudhypervisor.
org/docs/prologue/introduction/.

[24] INTEL. Kata containers. https://www.intel.com/content/
www/us/en/developer/articles/technical/kata-containers.
html.

[25] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LIGUORI, A.
kvm: the linux virtual machine monitor. In Proceedings of the Linux
symposium (2007), vol. 1, Dttawa, Dntorio, Canada, pp. 225–230.

[26] KIVITY, A., LAOR, D., COSTA, G., ENBERG, P., HAR’EL, N.,
MARTI, D., AND ZOLOTAROV, V. Osv—optimizing the operating
system for virtual machines. In 2014 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 14) (2014), pp. 61–72.

[27] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER, T., ET AL.
Spectre attacks: Exploiting speculative execution. Communications of
the ACM 63, 7 (2020), 93–101.

12

https://docs.docker.com/desktop/wasm/
https://docs.docker.com/desktop/wasm/
https://gvisor.dev/docs/
https://www.cloudhypervisor.org/docs/prologue/introduction/
https://www.cloudhypervisor.org/docs/prologue/introduction/
https://www.intel.com/content/www/us/en/developer/articles/technical/kata-containers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/kata-containers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/kata-containers.html


[28] KOLLER, R., AND WILLIAMS, D. Will serverless end the dominance
of linux in the cloud? In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems (2017), pp. 169–173.

[29] LEHMANN, D., KINDER, J., AND PRADEL, M. Everything old is new
again: Binary security of webassembly. In Proceedings of the 29th
USENIX Conference on Security Symposium (2020), pp. 217–234.

[30] LI, Z., GUO, L., CHENG, J., CHEN, Q., HE, B., AND GUO, M. The
serverless computing survey: A technical primer for design architecture.
ACM Computing Surveys (CSUR) 54, 10s (2022), 1–34.

[31] LI, Z., KIHL, M., LU, Q., AND ANDERSSON, J. A. Performance over-
head comparison between hypervisor and container based virtualization.
In 2017 IEEE 31st International Conference on advanced information
networking and applications (AINA) (2017), IEEE, pp. 955–962.

[32] LXC. Linux containers security. https://linuxcontainers.org/
lxc/security/.

[33] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT, D., SINGH,
B., GAZAGNAIRE, T., SMITH, S., HAND, S., AND CROWCROFT, J.
Unikernels: Library operating systems for the cloud. ACM SIGARCH
Computer Architecture News 41, 1 (2013), 461–472.

[34] MADHAVAPEDDY, A., AND SCOTT, D. J. Unikernels: the rise of the
virtual library operating system. Communications of the ACM 57, 1
(2014), 61–69.

[35] MAMPAGE, A., KARUNASEKERA, S., AND BUYYA, R. A holistic
view on resource management in serverless computing environments:
Taxonomy and future directions. ACM Computing Surveys (CSUR) 54,
11s (2022), 1–36.

[36] MANCO, F., LUPU, C., SCHMIDT, F., MENDES, J., KUENZER, S.,
SATI, S., YASUKATA, K., RAICIU, C., AND HUICI, F. My vm is
lighter (and safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles (2017), pp. 218–233.

[37] MARTIN, A., RAPONI, S., COMBE, T., AND DI PIETRO, R. Docker
ecosystem–vulnerability analysis. Computer Communications 122
(2018), 30–43.

[38] MAVRIDIS, I., AND KARATZA, H. Combining containers and vir-
tual machines to enhance isolation and extend functionality on cloud
computing. Future Generation Computer Systems 94 (2019), 674–696.

[39] MIEDEN, P., AND PARTARRIEU, P. Performance analysis of kvm-
based microvms orchestrated by firecracker and qemu. Tech. rep.,
Technical Report. University of Amsterdam, 2019.

[40] MORABITO, R., KJÄLLMAN, J., AND KOMU, M. Hypervisors vs.
lightweight virtualization: a performance comparison. In 2015 IEEE
International Conference on cloud engineering (2015), IEEE, pp. 386–
393.

[41] OLIVIER, P., CHIBA, D., LANKES, S., MIN, C., AND RAVINDRAN,
B. A binary-compatible unikernel. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments (2019), pp. 59–73.

[42] OSV. Design. http://osv.io/design.

[43] PATIL, R., AND MODI, C. An exhaustive survey on security con-
cerns and solutions at different components of virtualization. ACM
Computing Surveys (CSUR) 52, 1 (2019), 1–38.

[44] PEARCE, M., ZEADALLY, S., AND HUNT, R. Virtualization: Issues,
security threats, and solutions. ACM Computing Surveys (CSUR) 45, 2
(2013), 1–39.

[45] PEREZ-BOTERO, D., SZEFER, J., AND LEE, R. B. Characterizing
hypervisor vulnerabilities in cloud computing servers. In Proceedings
of the 2013 international workshop on Security in cloud computing
(2013), pp. 3–10.

[46] RANDAL, A. The ideal versus the real: Revisiting the history of virtual
machines and containers. ACM Computing Surveys (CSUR) 53, 1
(2020), 1–31.

[47] RANDAZZO, A., AND TINNIRELLO, I. Kata containers: An emerging
architecture for enabling mec services in fast and secure way. In
2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS) (2019), IEEE, pp. 209–214.

[48] RATHORE, M. S., HIDELL, M., AND SJÖDIN, P. Kvm vs. lxc: com-
paring performance and isolation of hardware-assisted virtual routers.
American Journal of Networks and Communications 2, 4 (2013), 88–96.

[49] REDHAT. What is kvm? https://www.redhat.com/en/topics/
virtualization/what-is-KVM.

[50] RUSSELL, R. virtio: towards a de-facto standard for virtual i/o devices.
ACM SIGOPS Operating Systems Review 42, 5 (2008), 95–103.

[51] SELINUX. svirt overview. https://selinuxproject.org/page/
SVirt.

[52] SHEN, Z., SUN, Z., SELA, G.-E., BAGDASARYAN, E., DELIMITROU,
C., VAN RENESSE, R., AND WEATHERSPOON, H. X-containers:
Breaking down barriers to improve performance and isolation of cloud-
native containers. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (2019), pp. 121–135.

[53] SHILLAKER, S., AND PIETZUCH, P. Faasm: Lightweight isola-
tion for efficient stateful serverless computing. arXiv preprint
arXiv:2002.09344 (2020).

[54] SHU, R., WANG, P., GORSKI III, S. A., ANDOW, B., NADKARNI,
A., DESHOTELS, L., GIONTA, J., ENCK, W., AND GU, X. A study
of security isolation techniques. ACM Computing Surveys (CSUR) 49,
3 (2016), 1–37.

[55] SIERRA-ARRIAGA, F., BRANCO, R., AND LEE, B. Security issues and
challenges for virtualization technologies. ACM Computing Surveys
(CSUR) 53, 2 (2020), 1–37.

[56] SMITH, J. E., AND NAIR, R. The architecture of virtual machines.
Computer 38, 5 (2005), 32–38.

[57] SULTAN, S., AHMAD, I., AND DIMITRIOU, T. Container security:
Issues, challenges, and the road ahead. IEEE access 7 (2019), 52976–
52996.

[58] SZEFER, J., KELLER, E., LEE, R. B., AND REXFORD, J. Eliminating
the hypervisor attack surface for a more secure cloud. In Proceedings
of the 18th ACM conference on Computer and communications security
(2011), pp. 401–412.

[59] VAN RIJN, V., AND RELLERMEYER, J. S. A fresh look at the ar-
chitecture and performance of contemporary isolation platforms. In
Proceedings of the 22nd International Middleware Conference (2021),
pp. 323–335.

[60] VOLPERT, S., ERB, B., EISENHART, G., SEYBOLD, D., WESNER, S.,
AND DOMASCHKA, J. A methodology and framework to determine
the isolation capabilities of virtualisation technologies. In Proceedings
of the 2023 ACM/SPEC International Conference on Performance
Engineering (2023), pp. 149–160.

[61] WANG, X., DU, J., AND LIU, H. Performance and isolation analysis
of runc, gvisor and kata containers runtimes. Cluster Computing 25, 2
(2022), 1497–1513.

[62] WILLIAMS, D., KOLLER, R., LUCINA, M., AND PRAKASH, N.
Unikernels as processes. In Proceedings of the ACM Symposium on
Cloud Computing (2018), pp. 199–211.

[63] WOLPERT, M. No free lunch theorem. https://en.wikipedia.
org/wiki/No_free_lunch_theorem.

[64] WRIGHT, C., COWAN, C., SMALLEY, S., MORRIS, J., AND KROAH-
HARTMAN, G. Linux security modules: General security support
for the linux kernel. In 11th USENIX Security Symposium (USENIX
Security 02) (2002).

[65] XAVIER, B., FERRETO, T., AND JERSAK, L. Time provisioning eval-
uation of kvm, docker and unikernels in a cloud platform. In 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid) (2016), IEEE, pp. 277–280.

13

https://linuxcontainers.org/lxc/security/
https://linuxcontainers.org/lxc/security/
http://osv.io/design
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://selinuxproject.org/page/SVirt
https://selinuxproject.org/page/SVirt
https://en.wikipedia.org/wiki/No_free_lunch_theorem
https://en.wikipedia.org/wiki/No_free_lunch_theorem


[66] XAVIER, M. G., NEVES, M. V., ROSSI, F. D., FERRETO, T. C.,
LANGE, T., AND DE ROSE, C. A. Performance evaluation of container-
based virtualization for high performance computing environments. In
2013 21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (2013), IEEE, pp. 233–240.

[67] XEN. Xen project software overview. https://wiki.xenproject.
org/wiki/Xen_Project_Software_Overview.

[68] YOUNG, E. G., ZHU, P., CARAZA-HARTER, T., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. The true cost of containing: A
gvisor case study. In HotCloud (2019).

14

https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview

	Introduction
	Related Surveys.
	Survey Methodology
	Overview of Current Landscape of Isolation Mechanisms
	Hypervisors
	A Primer on Hypervisor Attack Surface
	QEMU
	KVM
	Firecracker
	XEN
	Notable mentions
	Cloud Hypervisor
	crosvm


	Containers
	Docker containers
	LXC
	OpenVZ

	Secure Containers
	Kata containers
	Google gVisor

	Unikernels - Paravirtualisation
	OSv
	IncludeOS
	MirageOS
	Notable mention : Exokernel

	Conclusion
	Future Direction


