
GradeML: Towards Holistic Performance Analysis for
Machine Learning Workflows

Tim Hegeman
T.M.Hegeman@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

Matthijs Jansen
M.S.Jansen@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

Alexandru Iosup
Vrije Universiteit Amsterdam

The Netherlands

Animesh Trivedi
Vrije Universiteit Amsterdam

The Netherlands

ABSTRACT
Today, machine learning (ML) workloads are nearly ubiquitous.
Over the past decade, much effort has been put into making ML
model-training fast and efficient, e.g., by proposing new ML frame-
works (such as TensorFlow, PyTorch), leveraging hardware sup-
port (TPUs, GPUs, FPGAs), and implementing new execution mod-
els (pipelines, distributed training). Matching this trend, consid-
erable effort has also been put into performance analysis tools
focusing on ML model-training. However, as we identify in this
work, ML model training rarely happens in isolation and is instead
one step in a larger ML workflow. Therefore, it is surprising that
there exists no performance analysis tool that covers the entire
life-cycle of ML workflows. Addressing this large conceptual gap,
we envision in this work a holistic performance analysis tool for
ML workflows. We analyze the state-of-practice and the state-of-
the-art, presenting quantitative evidence about the performance
of existing performance tools. We formulate our vision for holistic
performance analysis of ML workflows along four design pillars: a
unified executionmodel, lightweight collection of performance data,
efficient data aggregation and presentation, and close integration in
ML systems. Finally, we propose first steps towards implementing
our vision as GradeML, a holistic performance analysis tool for ML
workflows. Our preliminary work and experiments are open source
at https://github.com/atlarge-research/grademl.

KEYWORDS
GradeML, Performance analysis, Machine learning workflow, Data
gathering, Modeling, MLDevOps
ACM Reference Format:
TimHegeman, Matthijs Jansen, Alexandru Iosup, and Animesh Trivedi. 2021.
GradeML: Towards Holistic Performance Analysis for Machine Learning
Workflows. In Companion of the 2021 ACM/SPEC International Conference
on Performance Engineering (ICPE ’21 Companion), April 19–23, 2021, Virtual
Event, France. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3447545.3451185

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8331-8/21/04. . . $15.00
https://doi.org/10.1145/3447545.3451185

Hops KubernetesTensorFlow

Data
Lake Ingestion Data

Preparation
Feature
Store

Model
Training

Model
Serving

Kafka

HopsFS Metadata Store

Airflow

Figure 1: Example ML workflow based on Hopsworks [21].

1 INTRODUCTION
We live in the golden age of machine learning (ML) systems. ML-
powered technologies are enabling breakthroughs inmany areas, in-
cluding healthcare (e.g., medical image analysis [36], precision agri-
culture [12], image processing [41], and autonomous vehicles [53]).
With further innovations, in the coming decade we aim to address
one of the grand challenges in the field - to reach human-level
intelligence and cognitive abilities in each area [15, 20]. For this to
happen, the systems able to runML processes need to becomemuch
more capable than today, and in particular need to support increas-
ingly more sophisticated ML workflows (e.g., as Figure 1 depicts).
This raises the problem of systematically increasing performance
and efficiency, a problem for which we have addressed only nar-
row aspects. Enlarging the scope of previous work in performance,
which has focused mainly on the ML training step [17, 22, 50], in
this work we envision holistic performance analysis for ML work-
flows.

The main motivation for this work is the rapid progress of ML
processes, from ad-hoc setups of only train-then-use steps, to com-
plex workflows integrating many steps. In a typical ML setup, a
large set of data is acquired and processed to build effective ML
models. In the past decade, ML model training has received much
attention, becoming increasingly faster and more efficient through
the use of better algorithms [60], systems architecture [18], and new
classes of hardware [56]. However, in the state-of-practice at the
beginning of the 2020s, ML model training is merely one step out
of the large ML workflow consisting of many steps that orchestrate
the emerging complexities of the ML life cycle.

To support an easy integration and automation of ML life cycle as
a workflow, recentlymanyMLworkflowmanagement systems have
been proposed [21, 35, 61], e.g., Amazon SageMaker1, Microsoft
1https://aws.amazon.com/machine-learning/

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

57

https://github.com/atlarge-research/grademl
https://doi.org/10.1145/3447545.3451185
https://doi.org/10.1145/3447545.3451185
https://doi.org/10.1145/3447545.3451185
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447545.3451185&domain=pdf&date_stamp=2021-04-19

Azure Machine Learning2, Google Cloud AutoML3, MIT North-
Star [32], and the Ease.ml service [33]. These services are part of
the bigger Continuous Integration/Continuous Development (CI/CD)
trend in ML workflows [28]. These systems provide a unified inter-
face and language for developers to integrate, schedule, and execute
multi-framework ML workflow orchestration in a distributed set-
ting. Typical steps include many (i.e., at least eight [2, 33]) and var-
ied activities with significantly different performance profiles than
training, including data acquisition [49], valuation [14], cleaning [8],
validation [47], model training [60], model selection [31], model
deployment [5], inference [10], and continuous integration [6].

As this new generation of ML workflow systems emerges and
matures, it needs increasingly better support for performance rea-
soning and modeling to operate efficiently and to scale. We identify
two key trends: First, a push for closely integrated, continuously op-
timized ML workflows: ML workflow systems have simplified the
development and deployment of complex ML workflows, so experts
are pushing for fast, automated, real-time model updates [4, 6].
To address these needs, systems specialists push for more closely
integrated, CI/CD, ML workflows. As the ML model training time
is optimized (i.e., decreased), and as more and more complex steps
are integrated in ML workflows, the non-training steps of the ML
workflows rapidly become the dominant factor in determining the
performance of the ML workflows. Hence, it is vital to understand
the end-to-end performance implications of various ML operations.

Second, a push for cloud and multi-tenancy. The focus of early
ML systems, such as TensorFlow and PyTorch, was to build stan-
dalone frameworks for ML model training. However, more recently
we have witnessed a push for scalable, multi-tenant, cloud-ready
deployments of ML training services and workflows [24, 25, 33, 63].
These systems promise to better utilize ML-oriented hardware
(large DRAMs, accelerators) by executing on them multiple work-
loads with varying resource needs concurrently (multiplexing).
Naturally, in this setting performance interference (during resource
allocation and execution) from other tenants can influence the per-
formance of both the entire ML workflow and individual steps,
which might be running with strict deadlines to supporting ML
QoS [29]. Approaches for reducing performance interference in
multi-tenant BigData workloads have proven successful [38, 57, 62],
so we expect ML to become more cloud-native as well.

In this work, we argue that, as the accessibility and affordability
of ML workflows increases, we need holistic performance analysis
tools for users to: (i) collect performance traces and data; (ii) analyze
them in real time; (iii) support light-weight, high-performance
integration within the ML workflow system. However, building any
such tool presents four main challenges:
(C1) Holistic view of execution:MLworkflow systems include

diverse data processing frameworks with their own perfor-
mance characteristics and metrics, which makes obtaining a
global view of workflow execution difficult.

(C2) Overhead: Rich performance traces are desirable to provide
deep insight into ML workflow performance, but obtaining
performance traces without introducing prohibitive perfor-
mance overhead remains a major challenge.

2https://docs.microsoft.com/en-us/azure/machine-learning/
3https://cloud.google.com/automl/

(C3) High-level results: Performance tracing produces large vol-
umes of low-level performance data. However, a typical ML
user does not have the expertise required to interpret this
data. A big challenge for a performance analysis tool is au-
tomatically analyzing low-level performance data to derive
high-level insight into performance for users.

(C4) Integration: Due to the diversity of data processing frame-
works and environments encountered in ML workflow sys-
tems, integrating seamlessly with any workflow system,
without requiring users to complete a complex setup and
configuration process, is a difficult task.

In this paper, we pose the question: How to ensure holistic per-
formance analysis for ML workflows? We present our vision for
a holistic framework that can help to analyze the performance of
CI/CD ML workflows in a systematic manner by addressing each
of the four main challenges. Our main contributions are:

(1) A qualitative and quantitative analysis of a selected set of
popular performance analysis tools in ML (in Section 2) to
make a case for a new approach to performance analysis for
ML workflows. We select and conduct a preliminary analysis
of two tools from the state-of-practice. We also select and
analyze several state-of-the-art instruments.

(2) We formulate our vision on holistic performance analysis
for ML workflows (Section 3). We synthesize four key pillars
in the design of a performance analysis tool and discuss
their design challenges: a unified execution model, collecting
execution traces, data aggregation and representation, and
integration in ML systems.

(3) We propose first steps towards GradeML, a holistic perfor-
mance analysis tool for ML workflows (Section 4). We start
from Grade10 [19], our work on holistic performance analy-
sis for graph processing, and propose extensions to imple-
ment our vision. Our preliminary work and experiments are
open source: https://github.com/atlarge-research/grademl

2 MOTIVATION
In this section, we analyze existing performance analysis tools for
ML, which mostly focus on model training and inference, and more
broadly for data processing systems. We discuss the limitations that
inspired our vision for a new, holistic approach to performance
analysis for ML workflow system.

2.1 State-of-the-Practice
Modern machine learning frameworks, such as Tensorflow and
PyTorch, include dedicated performance analysis tools.These tools
collect comprehensive execution traces of ML applications, i.e., logs
of every operation performed by the ML framework, including
timestamps, durations, and other metadata. These traces can be
visually inspected to determine which operations are most time-
consuming, whether the application is bottlenecked on data pro-
cessing or network communication, etc. However, in practice these
tracing tools impose significant performance overhead.

We conduct a preliminary experiment with example training
(MNIST) and inference (ImageNet) workloads using the PyTorch
and TensorFlow frameworks in a local cluster [3]. Experiment

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

58

https://github.com/atlarge-research/grademl

scripts, data, and details of our setup can be found on GitHub4.
Figure 2a summarizes the observed overhead of tracing. It depicts
the normalized makespan of the training and inference workloads
when not tracing (Disabled), when recording a single trace for the
entire workload (Full), and when recording the entire workload
as a sequence of traces (e.g., one trace per training epoch or per
inference batch, Batched). Makespans are normalized per workload,
such that the average duration without tracing is 1. We observe that
recording a single trace incurs the largest slowdowns, on average
1.17× for TensorFlow and 7.79× for PyTorch for model training, and
on average 1.47× for TensorFlow and 3.59× for PyTorch for model
inference. The overhead can be reduced by tracing a workload in
multiple, smaller steps, but remains significant enough that tracing
ML workloads in a production environment is not feasible.

Figure 2b depicts memory usage over time when training a small
model in PyTorch. We observe that when not tracing, this work-
load’s memory usage is at most 0.32 GB. Recording a single trace
causes memory usage to peak at 43 GB, an increase of 140×. This
memory overhead can be reduced by recording multiple, shorter
traces, with a peak memory usage of 11.3 GB, or 37× our baseline
for this application. The high memory overhead of tracing further
limits the usability of these tools, especially when system mem-
ory is needed to train large models, or for inference workloads in
memory-constrained environments such as edge devices.

2.2 State-of-the-Art
To overcome the limited use of tracing as provided by ML frame-
works, the community has proposed several approaches towards a
better understanding of ML performance. XSP [34] proposes across-
stack profiling for in-depth characterization of the performance of
deep neural network (DNN) inference workloads. Daydream [66]
provides insight into DNN training performance by predicting the
impact of potential hardware and software optimizations. Tian et
al. [54] propose performance diagnosis and prediction for dataflow
applications, including DNN training, by combining execution pro-
filing and resource usage inference. Justus et al. [27] train a neural
network to predict DNN training times, taking non-linear activities
like data loading and non-optimal parallel execution into account.

There are also several distribution models that are built on top
of existing ML frameworks that include performance analysis tools.
For example, Horovod [50], GPipe [22] and PipeDream [17] extend
frameworks like TensorFlow and Pytorch with data, model and
pipeline parallel execution for ML applications. They include tools
to do automatic performance tuning in the form of model partition-
ing, device placement and extended hyperparameter optimizations.

Benchmarks are another tool that can be used to better under-
stand a system’s capability to do ML. By executing a ML benchmark
with support for varying neural networks, datasets and distribu-
tion models implemented on a variety of frameworks, one can get
a better understanding of the performance characteristics of ML
workloads and the interaction with underlying hardware. Examples
include DAWNbench [9], MLPerf [40], Deep500 [7], HPCAI500 [26],
and DDLBench [23].

These performance analysis tools all extend state-of-the-practice
solutions meaningfully, but either focus on one system in the ML

4https://github.com/atlarge-research/grademl

TensorFlow
Inference

PyTorch
Inference

TensorFlow
Training

PyTorch
Training

0 1 2 3 4 5 6 7 8 9 10
Normalized Makespan

Fr
am

ew
or

k
/ W

or
kl

oa
d

Tracing
Full

Batched

Disabled

(a) Normalized makespan for example training and inference work-
loads on PyTorch and Tensorflow.

0

10

20

30

40

0 500 1000 1500
Time [s]

M
em

or
y

us
ag

e
[G

B]

Tracing
Full

Batched

Disabled

(b) Memory usage of PyTorch during model training.

Figure 2: Overhead of tracing in example ML training and
inference workloads.

workflow or on a single metric across multiple systems. Therefore
it is key for a holistic performance analysis framework to adopt and
combine these tools to provide better insight into ML performance.

2.3 Performance Analysis in Data Processing
The broader field of data processing applications includes a variety
of specialized approaches for performance analysis. For example,
Grade10 [19] models the execution and resources of graph pro-
cessing applications to correlate low-level performance issues with
application-level execution stages. Ousterhout et al. [45] propose
blocked time analysis for identifying network and storage bottle-
necks in Spark applications. G2 [16] provides a high-level query
language for correlating events in distributed execution graphs.
Various other approaches [11, 13, 55] collect and summarize low-
level metrics for complex big data systems, like the Hadoop stack.
These approaches were not designed for ML systems, but may be
integrated in a larger performance analysis tool to analyze common
data processing frameworks found in ML workflows.

Finally, performance analysis approaches for distributed systems
or even single machines are commonly used to study data process-
ing applications. CPU profilers [30, 48, 51], GPU profilers [43, 44],
distributed resource monitoring systems [1, 58], and distributed
tracing systems [37, 52, 64] collect a variety of raw performance
data, each with their own trade-offs between performance overhead
and completeness of data. Many of these systems and concepts are
already used to manually diagnose the performance of ML work-
loads, but integration in a specialized performance analysis tool
is necessary to automatically analyze and interpret the collected
performance data in the context of ML workflow systems.

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

59

https://github.com/atlarge-research/grademl

Hops KubernetesKafka

Airflow

Unified
Execution

Model
(Sec. 3.1)

Challenges:
- Stitching DFGs
- Missing DFGs

Collecting
Execution

Traces
(Sec. 3.2)

ML System

Dataflow
Graphs
(DFGs)

Challenges:
- Perf. Overhead
- Heterogeneous Data

TensorFlow

HopsFS Metadata Store

Resource metrics, logs, stack traces, etc.

Data
Aggregation

And
Presentation

(Sec. 3.3)

Challenges:
- Storage
- Analysis
- Querying

Integration in
ML Systems

(Sec. 3.4)

Challenges:
- Setup Cost
- Automated
 Configuration/
 Tuning

Figure 3: Vision for holistic performance analysis for ML workflows, including four key pillars and associated challenges.

3 VISION FOR HOLISTIC PERFORMANCE
ANALYSIS FOR MLWORKFLOWS

In this section, we present our vision for a holistic performance
analysis tool for ML workflows. We envision that a non-expert
user should be able to collect and aggregate performance data with
low overhead, and derive from this data high-level insight into
their workflow’s performance to answer questions such as: Which
steps in the workflow have the biggest impact on end-to-end per-
formance? How would increasing the resource allocation of one
framework impact performance? Are expensive resources used
efficiently throughout the workflow? We synthesize four pillars
in the design of a holistic performance analysis tool for ML work-
flows, derived from our four main challenges (Section 1), limitations
of existing approaches (Section 2), and our experience designing
Grade10 [19], a holistic performance analysis tool for graph process-
ing systems. For each pillar, we identify additional sub-challenges
and discuss approaches to address these challenges. We summarize
our vision, its pillars, and associated challenges in Figure 3.

3.1 Unified Execution Model
Typical ML workflow systems use a diverse set of data process-
ing frameworks for different steps in a ML workflow. Analyzing
the performance of each framework independently makes reason-
ing about their connections and collective performance difficult.
Instead, addressing challenge C1, we propose a unified execution
model to capture the different data processing steps and frame-
works involved in a ML workflow. Such a model should allow for
performance analysis tasks (e.g., detecting bottlenecks, load imbal-
ance) to be framework-agnostic, thus avoiding costly specialization
of every performance analysis task for every potential framework
that may be used in a ML workflow. A unified execution model
should also abstract away the implementation details of individ-
ual frameworks so users of the performance analysis tool do not
need to learn the inner workings of each framework they use to
understand the performance analysis outcomes presented to them.

A common approach for expressing the execution of data process-
ing frameworks is through dataflow graphs, i.e., the set of tasks per-
formed by an application and their data dependencies [54]. Dataflow

graphs are used internally by many data processing frameworks
(e.g., TensorFlow, PyTorch, Spark) to schedule the execution of
tasks, so these graphs can be readily exported for use in perfor-
mance analysis. Dataflow graphs also match well how users define
their workflows in modern ML systems [5, 33]. Users define the
high-level operations in their ML workflow and connect the out-
puts of some operations to the inputs of others to form a graph
of operations. Thus, we propose a unified execution model based
on dataflow graphs, by connecting the dataflow graphs of each
constituent framework in a ML workflow. To build such a model,
we must address two key challenges: (1) how to combine dataflow
graphs of different frameworks into a single dataflow graph, and
(2) how to obtain dataflow graphs for frameworks that do not use
or expose such a graph?

First, the dataflow graphs of data processing frameworks cap-
ture only the operations within one framework. Stitching these
dataflow graphs together into a unified model is non-trivial and
requires inserting connections to represent data flowing between
different data processing frameworks. Thus, we need to identify
which data processing frameworks are connected by dataflows, and
which operations in each framework act as the source and sink
of a cross-framework dataflow. The existence of dataflows can be
derived from the user-provided workflow definition, as it already
encodes all frameworks present in the ML workflow and their data
dependencies. Identifying the source and sink operations within
each framework is more difficult, but we propose an approach based
on inspecting network traffic to infer the timing of dataflows, which
may be correlated with each framework’s internal dataflow graph
to identify active operations at the time a dataflow occurred.

Second, dataflow graphsmay not be available for each framework
in the ML workflow. A simple approach is to treat such a framework
as a single black-box operation, but this severely limits reasoning
about the performance of individual operations within a framework.
Alternatively, a dataflow graph would have to be constructed. This
can be done manually, e.g., by a framework developer or expert
through source code annotation, or automatically, e.g., through
source code analysis. Existing performance analysis approaches
based on dataflow graphs assume the availability of a dataflow
graph [54, 66] or facilitate manual source code annotation [19]. The

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

60

feasibility of automatically constructing program flow graphs has
been demonstrated in other applications [42, 64], but determining
if these approaches can provide high-quality dataflow graphs for
ML workflows remains an open challenge.

3.2 Collecting Execution Traces
Having discussed constructing a unified execution model describ-
ing the high-level operation of a ML workflow, we now pay atten-
tion to collecting execution traces for understanding the low-level
performance characteristics of ML workflows. An execution trace
describes the execution of an application through a variety of low-
level performance data, such as resource consumption metrics,
application logs, and program stack traces. Efficiently collecting
rich execution traces (C2) for ML workflows imposes several chal-
lenges: (1) how to obtain low-level performance data without intro-
ducing significant performance overhead, and (2) how to combine
performance data collected from heterogeneous systems and data
sources into a holistic execution trace describing ML workflow
performance?

When collecting execution traces from production ML systems,
tracing overhead must be minimal to avoid any significant slow-
down of ML workflows executing within the system. As demon-
strated in our preliminary experiments with TensorFlow and Py-
Torch (Section 2.1), built-in tracers suffer from significant per-
formance overhead. However, other tracing and monitoring ap-
proaches for distributed systems promise more lightweight data col-
lection. For example, modern logging frameworks reduce the over-
head of recording (performance) events [59, 65]. Distributed moni-
toring systems [1, 58] efficiently collect resource metrics in large
clusters. Lightweight CPU profilers [30, 51] periodically collect
stack traces to effectively estimate which parts of an application’s
code consume most time. Although less comprehensive than the
complete application traces collected by TensorFlow/PyTorch, we
believe – supported by related performance analysis approaches [19,
54] – that a combination of lightweight event logging, resource
monitoring, and profiling provides sufficiently rich execution traces.

Execution traces collected from a multitude of sources need to
be combined to form a holistic view of ML workflow performance.
Combining these traces is non-trivial due to the heterogeneity of
data sources. For example, data sources may use different identi-
fiers to refer to the same entities (OS-level vs. application-level
identification of processes, hostname- vs IP-based identification of
machines), timestamped data may suffer from clock skew due to
non-synchronized local clocks, and data may be collected at differ-
ent time granularities. Existing approaches for combining execution
traces in data processing systems provide general solutions that
may be applicable to ML workflows. We propose an approach based
on Stitch [46], which automatically extracts relationships between
entities and identifiers from heterogeneous application logs and
traces.

3.3 Data Aggregation and Presentation
Any performance analysis tool is only as good as its ability to
inform the user about its findings. For system-level performance
analysis tools, such as CPU profilers [30, 48, 51], presenting raw,
low-level performance data is common and acceptable. However,

when analyzing the performance of complex ML workflow systems,
it is not feasible for users to manually inspect the large volumes
of raw performance data that will be collected. Also, an average
data scientist using a ML system is unlikely to have the expertise
required to interpret low-level performance data for every data pro-
cessing framework used throughout their workflow. To overcome
these issues, many existing approaches for performance analysis
in dataflow systems [11, 13, 19, 45] automate the collection and
analysis of performance data and present a high-level view on per-
formance (e.g., based on the dataflow graph) that users can inspect
or query. Based on these approaches, we identify three challenges
in allowing users of a holistic performance analysis tool to access
performance data and derive insight into the performance of their
ML workflows (C3): (1) performance data should be combined and
made accessible through a centralized system, (2) large volumes
of performance data should be analyzed automatically to derive
high-level performance observations, and (3) users should be able
to query performance data to answer specific questions about their
workflow’s performance.

By default, every system in a ML workflow will store their exe-
cution traces, in the form of metrics, profiles and logs, in a different
location. This makes it difficult to combine performance data from
different systems and to present users with a holistic view of their
workflow’s performance. A centralized storage system enables easy
access and better integration for performance data. As the bulk of
performance data will be timestamped (e.g., resource utilization
metrics, application logs), we propose a time-series database as a
suitable candidate for a centralized storage system.

Automated analysis of performance data is a necessity for a
tool collecting large volumes of performance data. Key to such
automation is defining what kinds of analysis to perform, i.e., what
kinds of performance issues to look for and what kinds of aggregate
performance data to compute. A common approach is picking a
set of well-known performance issues to look for, e.g., resource
bottlenecks [45], or workload imbalance [19]. However, a more
comprehensive approach is needed to cover the diversity of per-
formance issues that we expect to see in ML workflow systems. In
particular, we propose an approach based on Daydream [66], which
allows for analysis of arbitrary what-if scenario’s based on dataflow
graphs (to be extended to our unified execution model). Execution
of complex analysis tasks can be performed using one of many
(distributed) data processing frameworks, or be embedded into the
ML system to use already available data processing facilities [39].

In complex, heterogeneous systems like ML workflow systems,
performance cannot exclusively be captured in a single metric of
interest. Different components of the system exhibit different perfor-
mance characteristics over time, and experience performance issues
that may be independent or intertwined, concurrent or disjoint. To
understand not only the performance of the system, but also the
performance of individual components or system resources, users
must be able to query performance data for their ML workflows.
A basic approach could allow users to select parts of the unified
execution model they are interested in and be presented with a
summary of relevant performance characteristics and identified
performance issues [19]. A more comprehensive approach could
allow users to write custom queries using a language that designed
for correlating timestamped events and metrics [16, 37].

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

61

3.4 Integration in ML Systems
A typical user of a ML system cannot be expected to have any
expertise in deploying or configuring data processing frameworks.
Instead, when selecting the data processing frameworks to use
in a ML workflow, users are likely to use whatever frameworks
are available to them, e.g., frameworks explicitly supported by
their ML workflow management system [32, 33]. Because of this,
it is important for a performance analysis tool for ML workflows
to adapt to and seamlessly integrate with existing ML and data
processing frameworks instead of the other way around (C4). This
introduces two challenges: how to design a performance analysis
tool that (1) requires minimal expertise and user input to set up,
and (2) automatically configures and tunes itself once deployed?

A performance analysis tool that requires intricate knowledge of
ML system internals to set up and use is not feasible for an average
user. Furthermore, if a performance analysis tool requires extensive
changes to the systems it needs to analyze, it cannot be readily
deployed in managed or shared environments. Instead, setting up
a performance analysis tool should require minimal changes to
the existing ML system, and should require minimal user input.
This can be accomplished by, e.g., supporting out-of-the-box many
popular data processing frameworks, automatically identifying the
components present in an ML system (from a central source like
the workflow orchestrator/scheduler), and using dynamic code
injection to insert instrumentation into existing systems [37, 42].

Any complex tool, including a holistic performance analysis
tool for ML workflows, has many parameters that can be tuned
to alter the accuracy or performance of the tool. For example, the
sampling frequency of resource monitoring or CPU profiling tools
offers a trade-off between accuracy (i.e., being able to observe rapid
changes) and performance overhead (i.e., spending too much CPU
time on data collection). Users of a performance analysis tool cannot
be expected to invest time into configuring and tuning their tool,
so the tool should configure and tune itself, automatically. As a first
approach, our experience with Grade10 shows that sensible defaults
can be found experimentally or through expertise. Automatically
tuning a performance tool for for a particular ML system is left as
the next research challenge.

4 ONGOINGWORK: GRADEML
We are working on realizing our vision for holistic performance
analysis for ML workflows by designing and implementing a novel
performance analysis tool, GradeML. We start from Grade10 [19],
our previous work on performance analysis for graph processing
systems. Grade10 captures the execution of a graph processing
application in a hierarchical execution model, and collects coarse-
grained hardware and software resource consumption in a resource
model. It combines both models using a resource attribution process
to identify resource bottlenecks for individual steps in an applica-
tion’s execution model. Grade10 also identifies performance issues
found in graph processing, such as workload imbalance.

Grade10 addresses some initial challenges laid out in Section 3.
However, it has multiple limitations that we are addressing to create
GradeML, our extension of Grade10 for ML systems. For example,
Grade10’s execution model strongly resembles the unified execu-
tion model proposed in Section 3.1, but we are working on adding
support for stitching together multiple dataflow graphs.

For execution trace collection, Grade10 includes a lightweight
resource monitoring component. Grade10 also supports heteroge-
neous data sources, but currently requires hand-written rules to
combine them. Due to the large variety of data processing frame-
works, hand-written rules may be feasible for a proof-of-concept
tool, but for production use we are exploring an automated ap-
proach based on Stitch [46].

Grade10’s existing support for data aggregation and presentation
needs to be extended in several directions. Grade10 assumes an
external process collects relevant performance data. In GradeML’s
design, performance data is automatically collected in a central-
ized time-series database managed by GradeML. Automated per-
formance analysis is partially supported by Grade10, but needs a
more comprehensive approach to support the variety of perfor-
mance issues likely to exist in ML workflows. We plan to include
simulation of what-if scenarios in GradeML’s design, inspired by
Daydream [66]. Finally, Grade10 allows users to query it for top
performance issues and resource bottlenecks for any part of an ap-
plication’s execution model. We do not currently plan for GradeML
to extend this capability towards supporting arbitrary queries about
performance using a custom query language, as discussed in Sec-
tion 3.3.

Finally, Grade10 was not designed for ML and thus does not
integrate natively with ML workflow management systems. For
GradeML we consider closely the challenges of setup complexity
and tuning in the design of every component, especially for dataflow
graph and performance data collection (e.g., using dynamic instru-
mentation instead of requiring custom system binaries, empirically
identifying sensible defaults for key parameters).

5 CONCLUSION
With the popularity of machine learning systems and their appli-
cation in many areas, significant research effort has been invested
in making model training faster and more efficient. However, ML
model training is only one part of a larger ML workflow, which
ranges from data acquisition and cleaning to model inference and
continuous integration. In this work, we addressed this large con-
ceptual gap by formulating our vision for holistic performance
analysis for ML workflows, which has inspired our ongoing work
on a new performance analysis tool, GradeML.

We conducted an analysis on state-of-the-practice and state-of-
the-art work on machine learning and data processing. We formu-
lated our vision for a holistic performance analysis tool for ML
workflows through four design pillars: a unified execution model,
lightweight collection of performance data, efficient data aggre-
gation and presentation, and close integration in ML systems. As
future work, we propose first steps towards building GradeML as
implementation of our vision. We start from Grade10, our work on
performance analysis for graph processing systems, and explain
how it can be extended to meet our vision. Our preliminary work
and experiments are open source:

https://github.com/atlarge-research/grademl

ACKNOWLEDGMENTS
Work supported by NWO projects MagnaData and OffSense.

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

62

https://github.com/atlarge-research/grademl

REFERENCES
[1] Agelastos et al. 2014. The Lightweight Distributed Metric Service: A Scalable

Infrastructure for Continuous Monitoring of Large Scale Computing Systems
and Applications. In SC.

[2] Amershi et al. 2019. Software Engineering for Machine Learning: A Case Study.
In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP).

[3] Bal et al. 2016. A Medium-Scale Distributed System for Computer Science
Research: Infrastructure for the Long Term. IEEE Computer (2016).

[4] Banerjee et al. 2020. Challenges and Experiences with MLOps for Performance
Diagnostics in Hybrid-Cloud Enterprise Software Deployments. In 2020 USENIX
Conference on Operational Machine Learning (OpML 20).

[5] Baylor et al. 2017. Tfx: A tensorflow-based production-scale machine learning
platform. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[6] Baylor et al. 2019. Continuous Training for Production ML in the TensorFlow
Extended (TFX) Platform. In 2019 USENIX Conference on Operational Machine
Learning (OpML 19).

[7] Ben-Nun et al. 2019. A modular benchmarking infrastructure for high-
performance and reproducible deep learning. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS).

[8] Chu et al. 2016. Data cleaning: Overview and emerging challenges. In SIGMOD.
[9] Coleman et al. 2017. Dawnbench: An end-to-end deep learning benchmark and

competition. Training 100 (2017).
[10] Crankshaw et al. 2017. Clipper: A Low-Latency Online Prediction Serving System.

In Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation.

[11] Dai et al. 2011. HiTune: Dataflow-Based Performance Analysis for Big Data
Cloud. In ATC.

[12] Gadiraju et al. 2020. Multimodal Deep Learning Based Crop Classification Using
Multispectral and Multitemporal Satellite Imagery. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &; Data Mining.

[13] Garduño et al. 2012. Theia: Visual Signatures for Problem Diagnosis in Large
Hadoop Clusters. In Strategies, Tools , and Techniques: Proceedings of the 26th
Large Installation System Administration Conference, LISA 2012, San Diego, CA,
USA, December 9-14, 2012.

[14] Ghorbani and Zou. 2019. Data shapley: Equitable valuation of data for machine
learning. arXiv preprint arXiv:1904.02868 (2019).

[15] Yolanda Gil and Bart Selman. 2019. A 20-Year Community Roadmap for Artificial
Intelligence Research in the US. arXiv:1908.02624 [cs.CY]

[16] Guo et al. 2011. G2: A Graph Processing System for Diagnosing Distributed
Systems. In ATC.

[17] Harlap et al. 2018. Pipedream: Fast and efficient pipeline parallel dnn training.
arXiv preprint arXiv:1806.03377 (2018).

[18] He et al. 2016. Deep residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition.

[19] Hegeman et al. 2020. Grade10: A Framework for Performance Characterization
of Distributed Graph Processing. In CLUSTER.

[20] Hestness et al. 2019. Beyond Human-Level Accuracy: Computational Challenges
in Deep Learning. In Proceedings of the 24th Symposium on Principles and Practice
of Parallel Programming.

[21] Hopsworks. 2021. Hopsworks. https://www.hopsworks.ai/.
[22] Huang et al. 2019. Gpipe: Efficient training of giant neural networks using

pipeline parallelism. In Advances in Neural Information Processing Systems.
[23] Jansen et al. 2020. DDLBench: Towards a Scalable Benchmarking Infrastructure

for Distributed Deep Learning. In ISC.
[24] Jayaram et al. 2019. FfDL: A Flexible Multi-Tenant Deep Learning Platform. In

Proceedings of the 20th International Middleware Conference.
[25] Jeon et al. 2019. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN

Training Workloads. In Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference.

[26] Jiang et al. 2020. Hpc ai500: The methodology, tools, roofline performance models,
and metrics for benchmarking hpc ai systems. arXiv preprint arXiv:2007.00279
(2020).

[27] Justus et al. 2018. Predicting the computational cost of deep learning models. In
2018 IEEE International Conference on Big Data (Big Data).

[28] Karlaš et al. 2020. Building Continuous Integration Services for Machine Learning.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery &; Data Mining.

[29] Kim and Lee. 2020. Reducing Tail Latency of DNN-Based Recommender Systems
Using in-Storage Processing. In Proceedings of the 11th ACM SIGOPS Asia-Pacific
Workshop on Systems.

[30] Knüpfer et al. 2008. The Vampir Performance Analysis Tool-Set. In Tools for
High Performance Computing - Proceedings of the 2nd International Workshop on
Parallel Tools for High Performance Computing, July 2008, HLRS, Stuttgart.

[31] Kotthoff et al. 2017. Auto-WEKA 2.0: Automatic model selection and hyperpa-
rameter optimization in WEKA. The Journal of Machine Learning Research 18

(2017).
[32] Kraska. 2018. Northstar: An interactive data science system. Proceedings of the

VLDB Endowment 11 (2018).
[33] Li et al. 2018. Ease.Ml: Towards Multi-Tenant Resource Sharing for Machine

Learning Workloads. Proc. VLDB Endow. 11 (2018).
[34] Li et al. 2019. Across-Stack Profiling and Characterization of Machine Learning

Models on GPUs. CoRR abs/1908.06869 (2019).
[35] Lim et al. 2019. MLOp Lifecycle Scheme for Vision-based Inspection Process

in Manufacturing. In 2019 USENIX Conference on Operational Machine Learning
(OpML 19).

[36] Litjens et al. 2017. A survey on deep learning in medical image analysis. Medical
Image Analysis 42 (2017).

[37] Mace et al. 2015. Pivot Tracing: Dynamic Causal Monitoring for Distributed
Systems. In SOSP.

[38] Mace et al. 2015. Retro: Targeted Resource Management in Multi-tenant Dis-
tributed Systems. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation.

[39] Mai et al. 2020. KungFu: Making Training in Distributed Machine Learning
Adaptive. In OSDI.

[40] Mattson et al. 2019. Mlperf training benchmark. arXiv preprint arXiv:1910.01500
(2019).

[41] Mayer and Jacobsen. 2020. Scalable Deep Learning on Distributed Infrastructures:
Challenges, Techniques, and Tools. ACM Comput. Surv. 53 (2020).

[42] Mirgorodskiy et al. 2008. Diagnosing distributed systems with self-propelled
instrumentation. In Middleware.

[43] NVIDIA. 2021. NVIDIA Nsight. https://developer.nvidia.com/tools-overview.
[44] NVIDIA. 2021. NVIDIA Profiler. https://docs.nvidia.com/cuda/profiler-users-

guide/index.html.
[45] Ousterhout et al. 2015. Making Sense of Performance in Data Analytics Frame-

works. In NSDI.
[46] Pi et al. 2018. Profiling distributed systems in lightweight virtualized environ-

ments with logs and resource metrics. In HPDC.
[47] Polyzotis et al. 2019. Data validation for machine learning. Proceedings of Machine

Learning and Systems 1 (2019).
[48] Reinders. 2005. VTune performance analyzer essentials. Intel Press (2005).
[49] Salloum et al. 2017. A Survey of Text Mining in Social Media: Facebook and

Twitter Perspectives. Advances in Science, Technology and Engineering Systems
Journal 2 (2017).

[50] Sergeev and Del. 2018. Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[51] Shende and Malony. 2006. The TAU Parallel Performance System. IJHPCA 20
(2006).

[52] Sigelman et al. 2010. Dapper, a large-scale distributed systems tracing infrastruc-
ture. (2010).

[53] Tian et al. 2018. DeepTest: Automated Testing of Deep-Neural-Network-Driven
Autonomous Cars. In Proceedings of the 40th International Conference on Software
Engineering.

[54] Tian et al. 2019. Towards Framework-Independent, Non-Intrusive Performance
Characterization for Dataflow Computation. In Proceedings of the 10th ACM
SIGOPS Asia-Pacific Workshop on Systems.

[55] Wang et al. 2012. VScope: Middleware for Troubleshooting Time-Sensitive Data
Center Applications. In Middleware 2012 - ACM/IFIP/USENIX 13th International
Middleware Conference, Montreal, QC, Canada, December 3-7, 2012. Proceedings,
Vol. 7662.

[56] Wang et al. 2019. Benchmarking TPU, GPU, and CPU platforms for deep learning.
arXiv preprint arXiv:1907.10701 (2019).

[57] Wang et al. 2020. Metis: learning to schedule long-running applications in shared
container clusters at scale. In SC.

[58] Yang et al. [n.d.]. End-to-end I/O Monitoring on a Leading Supercomputer. In
NSDI.

[59] Yang et al. 2018. Nanolog: A nanosecond scale logging system. In ATC.
[60] You et al. 2018. Imagenet training in minutes. In ICPP.
[61] Zaharia et al. 2018. Accelerating the Machine Learning Lifecycle with MLflow.

IEEE Data Eng. Bull. 41 (2018).
[62] Zhang et al. 2014. MIMP: Deadline and Interference Aware Scheduling of Hadoop

Virtual Machines. In CCGrid.
[63] Zhang et al. 2020. Model-Switching: Dealing with Fluctuating Workloads in

Machine-Learning-as-a-Service Systems. In 12th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 20).

[64] Zhao et al. 2016. Non-Intrusive Performance Profiling for Entire Software Stacks
Based on the Flow Reconstruction Principle. In OSDI.

[65] Zhao et al. 2017. Log20: Fully automated optimal placement of log printing
statements under specified overhead threshold. In SOSP.

[66] Zhu et al. 2020. Daydream: Accurately Estimating the Efficacy of Optimizations
for DNN Training. arXiv preprint arXiv:2006.03318 (2020).

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

63

https://arxiv.org/abs/1908.02624
https://www.hopsworks.ai/
https://developer.nvidia.com/tools-overview
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

	Abstract
	1 Introduction
	2 Motivation
	2.1 State-of-the-Practice
	2.2 State-of-the-Art
	2.3 Performance Analysis in Data Processing

	3 Vision for Holistic Performance Analysis for ML Workflows
	3.1 Unified Execution Model
	3.2 Collecting Execution Traces
	3.3 Data Aggregation and Presentation
	3.4 Integration in ML Systems

	4 Ongoing Work: GradeML
	5 Conclusion
	Acknowledgments
	References

